[1] 段永川, 乔海棣, 张芳芳, 等. 屈服强度在线识别的分散性分析与精度验证[J]. 中国机械工程, 2020, 31(23):2864-2873. DUAN Yongchuan, QIAO Haidi, ZHANG Fangfang, et al. Dispersive analysis and accaracy verification of yield strength online recognition[J]. China Mechanical Engineering, 2020, 31(23):2864-2873. [2] DUAN Yongchuan, TIAN Le, ZHANG Fangfang, et al. A fast identification method of yield strength of materials based on bending experimental data[J]. Metals, 2020, 10(2):169. [3] PIERRON F, AVRIL S, TRAN V T. Extension of the virtual fields method to elastic-plastic material identification with cyclic loads and kinematic hardening[J]. Int. J. Solids Struct., 2010, 47(22):2993-3010. [4] KUWABARA T. Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations[J]. Int. J. Plast., 2007, 23(3):385-419. [5] DUAN Yongchuan, ZHANG Fangfang, YAO Dan, et al. Numerical prediction of fatigue life of an A356-T6 alloy wheel considering the influence of casting defect and mean stress[J]. Engineering Failure Analysis, 2020, 118:104903. [6] CHEN Jiang, CHEN Wenliang. The numerical simulation of multi-stage sheet metal forming based on modified Yoshida-Uemori hardening model[J]. Key Engineering Materials, 2017, 725:554-559. [7] CHABOCHE J L. A review of some plasticity and viscoplasticity constitutive theories[J]. Int. J. Plast., 2008, 24(10):1642-1693. [8] YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity describing the Bauschinger effect and work hardening stagnation[J]. Int. J. Plast., 2002, 18(5):661-686. [9] LI Xuechun, YANG Yuying, WANG Yongzhi, et al. Effect of the material-hardening mode on the springback simulation accuracy of V-free bending[J]. J. Mater. Process. Technol., 2002, 123(2):209-211. [10] SUN L, WAGONER R H. Complex unloading behavior:Nature of the deformation and its consistent constitutive Representation[J]. Int. J. Plast., 2011, 27(7):1126-1144. [11] FINCATO R, TSUTSUMI S, ZILIO A, et al. Fully implicit numerical integration of the Yoshida-Uemori two-surface plasticity model with isotropic hardening stagnation[J]. Fracture and Structural Integrity, 2021, 15(57):114-126. [12] EGGERTSEN P A, MATTIASSON K. On the identification of kinematic hardening material parameters for accurate springback predictions[J]. Int. J. Mater. Form., 2010, 4(2):103-120. [13] GAU J, KINZEL G L. A new model for springback prediction in which the Bauschinger effect is considered[J]. International Journal of Mechanical Sciences, 2001, 43(8):1813-1832. [14] DUAN Yongchuan, GUAN Yingping, WU Bin. Numerical prediction spring-back of high strength steel tailor welded blanks V-die bending process[J]. Chinese Journal of Mechanical Engineering, 2013, 49(23):76-83. [15] LIN J, HOU Y, MIN J, et al. Effect of constitutive model on springback prediction of MP980 and AA6022-T4[J]. Int. J. Mater. Form., 2020, 13(5):1-13. [16] MIN J, GUO N, HOU Y, et al. Effect of tension-compression testing strategy on kinematic model calibration and springback simulation of advanced high strength steels[J]. International Journal of Material Forming, 2021, 14:435-448. [17] GHAEI A, GREEN D E, TAHERIZADEH A. Semi-implicit numerical integration of Yoshida-Uemori two-surface plasticity model[J]. International Journal of Mechanical Sciences, 2010, 52(4):531-540. [18] 李健强. 材料本构模型的参数标定及其在高强度钢板材弯曲回弹预测中的应用[D]. 广州:华南理工大学, 2017. LI Jianqiang. Constitutive model parameter identification and its application to bending springback prediction of high strength sheet metal[D]. Guangzhou:South China University of Technology, 2017. [19] JIHAD N, HASSAN M N, SIAMAK M. Effects of hardening model and variation of elastic modulus on springback prediction in roll forming[J]. Metals, 2019, 9(9):1005. [20] ZHAO K M, LEE J K. Generation of cyclic stress-strain curves for sheet metals[J]. J. Eng. Mater. Technol., 2001, 123(4):391-397. [21] CARBONNIERE J, THUILLIER S, SABOURIN F, et al. Comparison of the work hardening of metallic sheets in bending-unbending and simple shear[J]. Int. J. Mech. Sci., 2009, 51(2):122-130. [22] ZHANG Zhiqiang, JIA Xiaofei, YUAN Qiuju. Springback analysis of trip high strength steel based on Yoshida-Uemori model[J]. Engineering and Technology Edition, 2015, 45(6):1852-1856. [23] LEE J Y, LEE J W, LEE M G, et al. An application of homogeneous anisotropic hardening to springback prediction in pre-strained U-draw bending[J]. Int. J. Solids Struct., 2012, 49(25):3562-3572. [24] CHUN B K, KIM H Y, LEE J K. Modeling the Bauschinger effect for sheet metals, part I:theory[J]. International Journal of Plasticity, 2002, 18(5-6):571-595. [25] YOSHIDA F, UEMORI T. A model of large-strain cyclic plasticity and its application to springback simulation[J]. Key Engineering Materials, 2003, 457(233-236):47-58. [26] CHUNG K, LEE M, KIM D, et al. Springback evaluation of automotive sheets based on isotropic-kinematic hardening laws and non quadratic anisotropic yield functions, part I:Theory and formulation[J]. International Journal of Plasticity, 2005, 21(5):861-882. [27] CHOI Y, HAN C S, LEE J K, et al. Modeling multi-axial deformation of planar anisotropic elastic-plastic materials, part I:Theory[J]. International Journal of Plasticity, 2006, 22(9):1745-1764. [28] LEE M, KIM D, KIM C, et al. A practical two surface plasticity model and its application to spring-back prediction[J]. International Journal of Plasticity, 2007, 23(7):1189-1212. |