机械工程学报 ›› 2023, Vol. 59 ›› Issue (19): 126-151.doi: 10.3901/JME.2023.19.126
周祖德, 姚碧涛
收稿日期:
2023-03-30
修回日期:
2023-09-05
出版日期:
2023-10-05
发布日期:
2023-12-11
通讯作者:
姚碧涛(通信作者),男,1986年出生,博士,副教授,硕士研究生导师。主要研究方向为人机协同制造、机械装备状态监测等。E-mail:bitaoyao@whut.edu.cn
作者简介:
周祖德,男,1946年出生,教授,博士研究生导师。主要研究方向为数字制造科学与技术、先进光纤传感技术、机械装备状态监测与故障诊断等。E-mail:zudezhou@whut.edu.cn
基金资助:
ZHOU Zude, YAO Bitao
Received:
2023-03-30
Revised:
2023-09-05
Online:
2023-10-05
Published:
2023-12-11
摘要: 数字制造作为第三次工业革命的一个重要内容,已成为推动21世纪制造业向前发展的强大动力,数字制造的相关理论与技术已逐步融入到制造产品的全生命周期,成为制造产品全生命周期中不可缺少的驱动因素。从数字制造科学与技术的形成背景、数字制造的概念,数字制造的理论基础出发,提出了数字制造的科学理论体系和数字制造技术的体系框架,详细阐述了构成数字制造科学的基本理论与关键技术。其科学理论体系包括数字制造计算几何学、数字制造信息学、数字制造建模、数字制造机械动力学、数字制造智能学、数字制造仿生制造学、数字制造测量误差与可靠性理论、数字制造技术管理学等。数字制造的技术架构包括设计技术、工艺技术、控制技术、加工技术、资源共享技术、监测技术、管理技术、营销与服务技术等。最后讨论了数字制造的前沿并展望了数字制造的应用前景。
中图分类号:
周祖德, 姚碧涛. 数字制造的科学体系与技术架构[J]. 机械工程学报, 2023, 59(19): 126-151.
ZHOU Zude, YAO Bitao. Scientific System and Technology Framework of Digital Manufacturing[J]. Journal of Mechanical Engineering, 2023, 59(19): 126-151.
[1] 周祖德. 数字制造[M]. 北京:科学出版社,2004. ZHOU Zude. Digital manufacturing[M]. Beijing:Science Press,2004. [2] WRIGHT P K. 21st Century manufacturing[M]. Upper Saddle River:Prentice Hall,2001. [3] 周济,李培根. 智能制造导论[M]. 北京:高等教育出版社,2021. ZHOU Ji,LI Peigen. Introduction to intelligent manufacturing[M]. Beijing:Higher Education Press,2021. [4] The Economist. The third industrial revolution[EB/OL]. https://www.economist.com/leaders/2012/04/21/the-third-industrial-revolution,2012. [5] HARTMANN B,KING W P,NARAYANAN S. Digital manufacturing:The revolution will be virtualized[M]. McKinsey & Company,2015. [6] Boeing is accelerating the Joint Force's digital revolution[EB/OL].https://www.boeing.com/defense/jadc2/digital-acceleration/index.page. [7] 韩志仁. 大飞机数字化制造关键技术[J]. 航空制造技术,2016,59(1/2):53-57. HAN Zhiren. Key technology for digital manufacturing of large aircraft[J]. Aeronautical Manufacturing Technology,2016,59(1/2):53-57. [8] 周祖德,余文勇,陈幼平. 数字制造的概念与科学问题[J]. 中国机械工程,2001,12(1):100-104. ZHOU Zude,YU Wenyong,CHEN Youping. Concept and related scientific problems of digital manufacturing[J]. China Mechanical Engineering,2001,12(1):100-104. [9] ZHOU Z,XIE S,CHEN D. Fundamentals of digital manufacturing science[M]. New York:Springer,2012. [10] NYLUND H,ANDERSSON P H. Framework for extended digital manufacturing systems[J]. International Journal of Computer Integrated Manufacturing,2011,24(5):446-456. [11] KAISER J,MCFARLANE D,HAWKRIDGE G. Review and classification of digital manufacturing reference architectures. In:Service oriented,holonic and multi-agent manufacturing systems for industry of the future[M]. Cham:Springer,2022. [12] TAO F,ZHANG L,VENKATESH V,et al. Cloud manufacturing:A computing and service-oriented manufacturing model[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2011,225(10):1969-1976. [13] 李伯虎,戴国忠. CIMS应用示范工程10年回顾与展望[J]. 计算机集成制造系统,1998,4(3):3-9. LI Bohu,DAI Guozhong. Decade retrospect and prospect of CIMS application Reference sites (CIMS- ARS)[J]. Computer Integrated Manufacturing Systems,1998,4(3):3-9. [14] 周祖德,谭跃刚,王汉熙. 探讨数字制造科学内涵展望制造全球化未来[J]. 国际学术动态,2007(4):17-20. ZHOU Zude,TAN Yuegang,WANG Hanxi. Explore the connotation of digital manufacturing science and look forward to the future of manufacturing globalization[J]. International Academic Trends,2007(4):17-20. [15] 李江雄,柯映林. 基于特征的复杂曲面反求建模技术研究[J]. 机械工程学报,2000,36(5):18-22. LI Jiangxiong,KE Yinglin. Feature-based surface modeling of complex surface in reverse engineerng[J]. Journal of Mechanical Engineering,2000,36(5):18-22. [16] MOURTZIS D,DOUKAS M,BERNIDAKI D. Simulation in manufacturing:Review and challenges[J]. Procedia CIRP,2014,25:213-229. [17] GUIMARÃES A M C,LEAL J E,MENDES P J C I I. Discrete-event simulation software selection for manufacturing based on the maturity model[J]. Computers in Industry,2018,103:14-27. [18] ZÚÑIGA E R,MORIS M U,SYBERFELDT A,et al. A simulation-based optimization methodology for facility layout design in manufacturing[J]. IEEE Access,2020,8:163818-163828. [19] LANG S,REGGELIN T,MÜLLER M,et al. Open-source discrete-event simulation software for applications in production and logistics:An alternative to commercial tools?[J]. Procedia Computer Science,2021,180:978-987. [20] MOURTZIS D. Simulation in the design and operation of manufacturing systems:State of the art and new trends[J]. International Journal of Production Research,2020,58(7):1927-1949. [21] KUSIAK A. Predictive models in digital manufacturing:Research,applications,and future outlook[J]. International Journal of Production Research,2023,61(17):6052-6062. [22] ZHANG L,ZHOU L,REN L,et al. Modeling and simulation in intelligent manufacturing[J]. Computers in Industry,2019,112:103123. [23] CUI Z P,ZHANG H J,ZONG W J,et al. Origin of the lateral return error in a five-axis ultraprecision machine tool and its influence on ball-end milling surface roughness[J]. International Journal of Machine Tools and Manufacture,2022,178:103907. [24] LIANG C,YUAN F,CHEN X,et al. Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision positioning stages[J]. Frontiers of Mechanical Engineering,2019,14(3):255-272. [25] MA S,YIN Y,CHAO B,et al. A real-time coupling model of bearing-rotor system based on semi-flexible body element[J]. International Journal of Mechanical Sciences,2023,245:108098. [26] WANG J,YE L,GAO R X,et al. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research,2019,57(12):3920-3934. [27] LUO W,HU T,YE Y,et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin[J]. Robotics and Computer-Integrated Manufacturing,2020,65:101974. [28] LV J,LI X,SUN Y,et al. A bio-inspired LIDA cognitive-based digital twin architecture for unmanned maintenance of machine tools[J]. Robotics and Computer-Integrated Manufacturing,2023,80:102489. [29] ARINEZ J F,CHANG Q,GAO R X,et al. Artificial intelligence in advanced manufacturing:Current status and future outlook[J]. Journal of Manufacturing Science and Engineering,2020,142(11). [30] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507. [31] SILVER D,HUANG A,MADDISON C J,et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature,2016,529(7587):484-489. [32] WANG L. From intelligence science to intelligent manufacturing[J]. Engineering,2019,5(4):615-618. [33] 熊有伦. 智能制造[J]. 科技导报,2013,31(10):3. XIONG Youlun. Intelligent manufacturing[J]. Science & Technology Review,2013,31(10):3. [34] FENG Y,ZHAO Y,ZHENG H,et al. Data-driven product design toward intelligent manufacturing:A review[J]. 2020,17(2):1729881420911257. [35] XIONG Y,TANG Y,ZHOU Q,et al. Intelligent additive manufacturing and design:State of the art and future perspectives[J]. Additive Manufacturing,2022,59:103139. [36] CARVALHO T P,SOARES F A A M N,VITA R,et al. A systematic literature review of machine learning methods applied to predictive maintenance[J]. Computers & Industrial Engineering,2019,137:106024. [37] LI C,ZHENG P,YIN Y,et al. Deep reinforcement learning in smart manufacturing:A review and prospects[J]. CIRP Journal of Manufacturing Science and Technology,2023,40:75-101. [38] XIA L,ZHENG P,LI X,et al. Toward cognitive predictive maintenance:A survey of graph-based approaches[J]. Journal of Manufacturing Systems,2022,64:107-120. [39] 宗光华,毕树生. 关于21世纪初我国仿生机械与仿生制造的若干思考[J]. 中国机械工程,2001,12(10):1201-1204. ZONG Guanghua,BI Shusheng. Some thoughts on bionic machinery and bionic manufacturing in the beginning of 21st century[J]. China Mechanical Engineering,2001,12(10):1201-1204. [40] 师汉民. 论仿生制造[J]. 中国机械工程,1998,9(1):51-54. SHI Hanmin. On the bionics manufacturing[J]. China Mechanical Engineering,1998,9(1):51-54. [41] EVOLOPR O. Evolutionary self-adaptation of complex production processes and products[EB/OL]. https://www.ipt.fraunhofer.de/en/Press/Pressreleases/230621-evolopro-evolution-of-production-technology.html,2023. [42] 王广生. 技术管理学研究:回顾与前瞻[J]. 科技进步与对策,2015,32(10):151-154. WANG Guangsheng. Research on Technology management:Review and prospects[J]. Science & Technolgoy Progress and Policy,2015,32(10):151-154. [43] CETINDAMAR D,PHAAL R. Technology management:activities and tools[M]. Bloomsbury Publishing,2017. [44] CETINDAMAR D,PHAAL R. Technology management in the age of digital technologies[J]. IEEE Transactions on Engineering Management,2021:1-9. [45] TAO F,SUI F,LIU A,et al. Digital twin-driven product design framework[J]. International Journal of Production Research,2019,57(12):3935-3953. [46] PANAROTTO M,ISAKSSON O,VIAL V. Cost-efficient digital twins for design space exploration:A modular platform approach[J]. Computers in Industry,2023,145. [47] WAGNER R,SCHLEICH B,HAEFNER B,et al. Challenges and potentials of digital twins and industry 4.0 in product design and production for high performance products[J]. Procedia CIRP,2019,84:88-93. [48] SINGH V,WILLCOX K E. Engineering design with digital thread[J]. AIAA Journal,2018,56(11):4515-4528. [49] 周祖德,谭跃刚. 数字制造的基本理论与关键技术[M]. 武汉:武汉理工大学出版社,2016. ZHOU Zude,TAN Yuegang. Fundamental theories and key technologies of digital manufacturing[M]. Wuhan:Wuhan University of Technology Press,2016. [50] 刘继红,王俊峰. 复杂产品协同装配设计与规划[M]. 武汉:华中科技大学出版社,2011. LIU Jihong,WANG Junfeng. Collaborative assembly design and planning for complex products[M]. Wuhan:Huazhong University of Science & Technology Press,2011. [51] ZHANG X M,ZHANG K,ZHANG D,et al. New in situ imaging-based methodology to identify the material constitutive model coefficients in metal cutting process[J]. Journal of Manufacturing Science and Engineering,2019,141(10):101307. [52] BERGS T,ABOURIDOUANE M,MEURER M,et al. Digital image correlation analysis and modelling of the strain rate in metal cutting[J]. CIRP Annals,2021,70(1):45-48. [53] MIRKOOHI E,BOCCHINI P,LIANG S Y. Inverse analysis of residual stress in orthogonal cutting[J]. Journal of Manufacturing Processes,2019,38:462-471. [54] LI C,ZHAO X,CAO H,et al. A data and knowledge-driven cutting parameter adaptive optimization method considering dynamic tool wear[J]. Robotics and Computer-Integrated Manufacturing,2023,81:102491. [55] LU F,ZHOU G,ZHANG C,et al. Energy-efficient multi-pass cutting parameters optimisation for aviation parts in flank milling with deep reinforcement learning[J]. Robotics and Computer-Integrated Manufacturing,2023,81:102488. [56] WANG F,ZHANG B,JIA Z,et al. Structural optimization method of multitooth cutter for surface damages suppression in edge trimming of Carbon Fiber Reinforced Plastics[J]. Journal of Manufacturing Processes,2019,46:204-213. [57] 陶飞,戚庆林. 面向服务的智能制造[J].机械工程学报,2018,54(16):11-23. TAO Fei,QI Qinglin. Service-oriented smart manufacturing[J]. Journal of Mechanical Engineering,2018,54(16):11-23. [58] SRAI J S,KUMAR M,GRAHAM G,et al. Distributed manufacturing:Scope,challenges and opportunities[J]. International Journal of Production Research,2016,54(23):6917-6935. [59] XU X. From cloud computing to cloud manufacturing[J]. Robotics and Computer-integrated Manufacturing,2012,28(1):75-86. [60] 袁勇,王飞跃. 区块链技术发展现状与展望[J]. 自动化学报,2016,42(4):481-494. YUAN Yong,WANG Feiyue. Blockchain:The state of the art and future trends[J]. Acta Automatica Sinica,2016,42(4):481-494. [61] 周祖德,谭跃刚,刘明尧,等. 机械系统光纤光栅分布动态监测与诊断的现状与发展[J]. 机械工程学报,2013,49(19):55-69. ZHOU Zude,TAN Yuegang,LIU Mingyao,et al. Actualities and development on dynamic monitoring and diagnosis with distributed fiber bragg grating in mechanical systems[J]. Journal of Mechanical Engineering,2013,49(19):55-69. [62] SERIN G,SENER B,OZBAYOGLU A M,et al. Review of tool condition monitoring in machining and opportunities for deep learning[J]. The International Journal of Advanced Manufacturing Technology,2020,109(3):953-974. [63] HUANG J,ZHOU Z,LIU M,et al. Real-time measurement of temperature field in heavy-duty machine tools using fiber Bragg grating sensors and analysis of thermal shift errors[J]. Mechatronics,2015,31:16-21. [64] GRASSO M,COLOSIMO B M. Process defects and in situ monitoring methods in metal powder bed fusion:a review[J]. Measurement Science and Technology,2017,28(4):044005. [65] CATALUCCI S,THOMPSON A,PIANO S,et al. Optical metrology for digital manufacturing:A review[J]. International Journal of Advanced Manufacturing Technology,2022,120(7-8):4271-4290. [66] 周祖德,姚碧涛,谭跃刚,等. 光纤传感在制造领域应用的分析与思考[J]. 机械工程学报,2022,58(8):3-26. ZHOU Zude,YAO Bitao,TAN Yuegang,et al. Analysis and thoughts on application of optical fibre sensing in manufacturing[J]. Journal of Mechanical Engineering,2022,58(8):3-26. [67] MAGNANINI M C,MASTRANGELO M,TOLIO T A M. Hybrid digital modelling of large manufacturing systems to support continuous evolution[J]. CIRP Annals,2022,71(1):389-392. [68] SAEZ M,BARTON K,MATURANA F,et al. Modeling framework to support decision making and control of manufacturing systems considering the relationship between productivity,reliability,quality,and energy consumption[J]. Journal of Manufacturing Systems,2022,62:925-938. [69] ZHANG M,TAO F,NEE A Y C. Digital twin enhanced dynamic job-shop scheduling[J]. Journal of Manufacturing Systems,2021,58:146-156. [70] SODERBERG R,WARMEFJORD K,CARLSON J S,et al. Toward a digital twin for real-time geometry assurance in individualized production[J]. CIRP Annals-Manufacturing Technology,2017,66(1):137-140. [71] LENG J,LIU Q,YE S,et al. Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model[J]. Robotics and Computer-Integrated Manufacturing,2020,63:101895. [72] ZHANG C,XU W,LIU J,et al. Digital twin-enabled reconfigurable modeling for smart manufacturing systems[J]. International Journal of Computer Integrated Manufacturing,2021,34(7-8):709-733. [73] 彭欣. R公司数字营销服务创新研究[D]. 西安:电子科技大学,2021. PENG Xin. Research on R company's digital marketing service innovation[D]. Xi'an:University of Electronic Science and Technology of China,2021. [74] 姚曦,秦雪冰. 技术与生存:数字营销的本质[J]. 新闻大学,2013(6):58-63. YAO Xi,QIN Xuebing. Technology and survival:the essence of digital marketing[J]. Journalism Bimonthly,2013(6):58-63. [75] SHAHRUBUDIN N,LEE T C,RAMLAN R. An overview on 3D printing technology:Technological,materials,and applications[J]. Procedia Manufacturing,2019,35:1286-1296. [76] JANDYAL A,CHATURVEDI I,WAZIR I,et al. 3D printing-A review of processes,materials and applications in industry 4.0[J]. Sustainable Operations and Computers,2022,3:33-42. [77] REN Z,GAO L,CLARK S J,et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion[J]. Science,2023,379(6627):89-94. [78] ZHANG L,LUO Y,TAO F,et al. Cloud manufacturing:a new manufacturing paradigm[J]. Enterprise Information Systems,2014,8(2):167-187. [79] 颜永年,张婷,张人佶,等. 细胞及生物材料的成形制造技术[J]. 机械工程学报,2010,46(5):80-87. YAN Yongnian,ZHANG Ting,ZHANG Renji,et al. Forming and manufacturing technique for cells and biological materials[J]. Journal of Mechanical Engineering,2010,46(5):80-87. [80] SINGH H,SINGH S,PRAKASH C. Current trends in biomaterials and bio-manufacturing. In:PRAKASH,C,et al. Biomanufacturing[M]. Cham:Springer,2019. [81] 杨华勇,赖一楠,贺永,等. 生物制造关键基础科学问题[J]. 中国科学基金,2018(2):208-213. YANG Huayong,LAI Yinan,HE Yong,et al. Key scientific issues on biomanufacturing[J]. China Science Foundation,2018(2):208-213. [82] GARGALO C L,DE LAS HERAS S C,JONES M N,et al. Towards the development of digital twins for the bio-manufacturing industry. In:Digital twins:Tools and concepts for smart biomanufacturing[M]. Cham:Springer,2020. [83] 屠海令,李腾飞,马飞. 我国关键基础材料发展现状及展望[J]. 中国工程科学,2017,19(3):125-135. TU Hailing,LI Tengfei,MA Fei. The development status and prospect of China's critical basic materials[J]. Strategic Study of CAE,2017,19(3):125-135. [84] 金展鹏,蔡格梅,苏柳梅,等. 论新材料与制造科学体系在高科技和产业化中的作用[J]. 中国科学:技术科学,2016(9):877-893. JIN Zhanpeng,CAI Gemei,SU Liumei,et al. Strategies of materials development and manufacturing and their effects for Chinese high-tech industries[J]. Scientia Sinica (Technologica),2016(9):877-893. [85] 谢建新,宿彦京,薛德祯,等. 机器学习在材料研发中的应用[J]. 金属学报,2021,57(11):1343-1361. XIE Jianxin,SU Yanjing,XUE Dezhen,et al. Machine learning for materials research and development[J]. Acta Metallurgica Sinica,2021,57(11):1343-1361. [86] 钟掘. 极端制造:当代制造科学与技术的前沿[J]. 机械工人:冷加工,2005(11):23-24. ZHONG Jue. Extreme manufacturing:Frontiers of contemporary manufacturing science and technology[J]. Machinist,2005(11):23-24. [87] GUO D,LU Y. Overview of extreme manufacturing[J]. International Journal of Extreme Manufacturing,2019,1(2):020201. [88] 李天梁,郭金秀,吴冬健,等. 基于光纤传感的极端环境下装备制造与运行状态监测技术现状与发展[J].机械工程学报,2022,58(8):27-53. LI Tianliang,GUO Jinxiu,WU Dongjian,et al. Recent advances and tendency of optical fiber sensing technology for equipment manufacturing and operating states monitoring in extreme environments[J]. Journal of Mechanical Engineering,2022,58(8):27-53. [89] 郭东明. 高性能制造[J]. 机械工程学报,2022,58(21):225-242. GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering,2022,58(21):225-242. [90] ZHOU Z,YAO B,XU W,et al. Condition monitoring towards energy-efficient manufacturing:A review[J]. The International Journal of Advanced Manufacturing Technology,2017,91(9-12):3395-3415. [91] ABDUL RASHID S,EVANS S,LONGHURST P. A comparison of four sustainable manufacturing strategies[J]. International Journal of Sustainable Engineering,2008,1(3):214-229. [92] GARETTI M,TAISCH M. Sustainable manufacturing:Trends and research challenges[J]. Production Planning & Control,2012,23(2-3):83-104. [93] LU Y,ZHENG H,CHAND S,et al. Outlook on human-centric manufacturing towards industry 5.0[J]. Journal of Manufacturing Systems,2022,62:612-627. [94] SCHLEICH B,ANWER N,MATHIEU L,et al. Shaping the digital twin for design and production engineering[J]. Cirp Annals-Manufacturing Technology,2017,66(1):141-144. [95] DE PAULA FERREIRA W,ARMELLINI F,DE SANTA-EULALIA L A. Simulation in industry 4.0:A state-of-the-art review[J]. Computers Industrial Engineering,2020,149:106868. [96] Metaverse report-Future is here Global XR industry insight[EB/OL].https://www2.deloitte.com/cn/en/pages/technology-media-and-telecommunications/articles/metaverse-whitepaper.html,2022. [97] MOURTZIS D,PANOPOULOS N,ANGELOPOULOS J,et al. Human centric platforms for personalized value creation in metaverse[J]. Journal of Manufacturing Systems,2022,65:653-659. [98] LEE J,KUNDU P. Integrated cyber-physical systems and industrial metaverse for remote manufacturing[J]. Manufacturing Letters,2022,34:12-15. [99] 马南峰,姚锡凡,陈飞翔,等. 面向工业5.0的人本智造[J]. 机械工程学报,2022,58(18):88-102. MA Nanfeng,YAO Xifan,CHEN Feixiang,et al. Human-centric smart manufacturing for industry 5.0[J]. Journal of Mechanical Engineering,2022,58(18):88-102. |
[1] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[2] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
[3] | 姜文涛, 刘晓明, 李培源, 陈海, 张煦松. 机械式真空快速切换开关机构多目标优化设计[J]. 机械工程学报, 2024, 60(6): 153-162. |
[4] | 刘达新, 王科, 刘振宇, 许嘉通, 谭建荣. 基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究[J]. 机械工程学报, 2024, 60(5): 36-50. |
[5] | 石健, 刘冬, 王少萍. 基于数字孪生的机电液系统PHM关键技术综述[J]. 机械工程学报, 2024, 60(4): 66-81. |
[6] | 杨亮亮, 来孝楠, 何西旺, 李鹏, 郭正刚, 宋学官. 面向飞机机翼数字孪生的在线加速度积分方法[J]. 机械工程学报, 2024, 60(2): 342-355. |
[7] | 陈健, 孟义兴, 袁慎芳, 徐秋慧, 王卉. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J]. 机械工程学报, 2024, 60(16): 34-42. |
[8] | 刘岳开, 王天杨, 褚福磊. 基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究[J]. 机械工程学报, 2024, 60(12): 107-115. |
[9] | 叶文昌, 郭必成, 邓朝晖, 王伟, 邹伶俐, 刘超, 尹刚刚, 姜峰. 刀具智能化关键技术的研究进展及发展趋势[J]. 机械工程学报, 2023, 59(23): 265-282. |
[10] | 侯正航, 何卫平, 王淑侠, 胡余彭, 肖一帆. 基于数字孪生的弧齿型导引头伺服机构动态装调技术研究[J]. 机械工程学报, 2023, 59(22): 433-443. |
[11] | 李宏坤, 魏代同, 陈玉刚, 许书本. 数字孪生驱动的旋转叶盘振动状态全景感知方法[J]. 机械工程学报, 2023, 59(21): 270-282. |
[12] | 谭建荣, 高铭宇, 徐敬华, 王林轩, 贾晨, 张树有, 王康. 数智化正向设计方法及其在制造装备与过程中的应用[J]. 机械工程学报, 2023, 59(19): 111-125. |
[13] | 丁明娜, 刘献礼, 岳彩旭, 范梦超, 顾浩. 面向智能制造过程的刀具设计、制备与管控技术[J]. 机械工程学报, 2023, 59(19): 429-459. |
[14] | 陶飞, 张辰源, 刘蔚然, 张贺, 马昕, 高鹏飞, 张建康. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215. |
[15] | 曹雪梅, 何宏图, 魏冰阳, 许浩. 螺旋锥齿轮数字孪生体模态参数的提取与分析[J]. 机械工程学报, 2023, 59(13): 260-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||