• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (17): 300-309.doi: 10.3901/JME.2023.17.300

• 制造工艺与装备 • 上一篇    下一篇

扫码分享

基于粘弹性球形小磨头的小口径非球面模具抛光

张嘉荣1,2, 王晗1,2, 卓少木1,2, 姚洪辉1,2, 朱相优1,2, 马帅杰2, 詹道桦1,2   

  1. 1. 广东工业大学省部共建精密电子制造技术与装备国家重点实验室 广州 510006;
    2. 广东工业大学广东省微纳加工技术与装备重点实验室 广州 510006
  • 收稿日期:2022-09-26 修回日期:2023-03-15 出版日期:2023-09-05 发布日期:2023-11-16
  • 通讯作者: 姚洪辉(通信作者),男,1985年出生,博士,硕士研究生导师。主要研究方向为超精密加工技术及精密玻璃模压成形。E-mail:yaohonghui666@163.com
  • 作者简介:张嘉荣,男,1993年出生,博士研究生。主要研究方向为超精密加工与检测技术。E-mail:jiarongz0824@163.com;王晗,男,1980年出生,博士,教授,博士研究生导师。主要研究方向精密测量及微纳加工装备制造。E-mail:wanghangood@gdut.edu.cn
  • 基金资助:
    国家自然科学基金(62171142)和广东大学生科技创新培育专项资金资助项目。

Polishing of Micro Aspheric Mold Based on Viscoelastic Spherical Small Polishing Tool

ZHANG Jiarong1,2, WANG Han1,2, ZHUO Shaomu1,2, YAO Honghui1,2, ZHU Xiangyou1,2, MA Shuaijie2, ZHAN Daohua1,2   

  1. 1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006;
    2. Guangdong Provincial Key Laboratory of Micro-Nano Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006
  • Received:2022-09-26 Revised:2023-03-15 Online:2023-09-05 Published:2023-11-16

摘要: 传统的抛光方法加工小口径非球面模具,存在工具容易干涉和面型误差补偿精度差的问题。提出一种使用粘弹性聚酯纤维布包裹球形小磨头的子孔径抛光方式,以适应小口径非球面模具的轮廓形状变化。首先,通过探究纤维布的压缩量与其不可恢复形变量和粘弹性应力的关系,确定抛光过程中纤维布的压缩形变规律,提出以纤维布的粘弹特性为基础,建立抛光压强分布模型,并结合抛光工具与模具的位姿得出合线速度分布规律,建立小磨头抛光单位时间去除函数;然后,通过单点抛光和均匀抛光实验,证明了粘弹性聚酯纤维布包裹球形小磨头的抛光方式比单独采用刚性球形小磨头抛光的效果更佳;接着使用粘弹性球形小磨头进行环带实验,探究了驻留时间、抛光压力、抛光工具转速和工件轴线速度等工艺参数对碳化钨模具的材料去除深度和表面粗糙度的影响规律,并对直径为9.7 mm的回转对称非球面碳化钨模具进行面型误差补偿仿真与验证;最后,结果表明模具的面型误差仿真结果和实验补偿效果都有效收敛,面型误差PV值(Peak to valley)从0.208 7 μm改善至0.079 9 μm,而且中心处表面粗糙度Ra由20 nm降至10 nm。证明了提出的基于粘弹性球形小磨头的子孔径抛光去除模型对小口径非球面模具面型精度与表面质量控制的有效性。

关键词: 球形小磨头, 非球面模具, 粘弹性, 压强分布模型, 面型精度

Abstract: The traditional polishing method for machining small aspheric molds has the problems such as easy tool interference and poor accuracy of surface error compensation. A sub-aperture polishing method using viscoelastic polyester fiber cloth to wrap the spherical small polishing tool is proposed to adapt to the surface shape change of the aspheric mold. Firstly, the compressive deformation rules of the fiber cloth in the polishing process are determined by exploring the relationship between the compression value of the polishing fiber cloth and its irreversible deformation and its viscoelastic stress. A polishing pressure distribution model based on the viscoelastic properties of fiber cloth is proposed, and the linear velocity distribution law is obtained by combining the position and orientation of the polishing tool and the mold, and the tool influence function (TIF) of the small polishing tool is established. Then, it is proved that the polishing method of wrapping a spherical small polishing tool with viscoelastic polyester fiber cloth has a better effect than that of using a rigid spherical small polishing tool through the single point polishing and uniform polishing experiments. Next, the influence of the process parameters such as dwell time, polishing pressure, polishing tool rotation speed, and workpiece axis speed on the material removal depth and surface roughness Ra of the tungsten carbide mold is explored by the ring belt polishing experiments by viscoelastic spherical small polishing tool, and the surface error compensation simulation and experimental verification are carried out on the rotary symmetric aspheric tungsten carbide mold with a diameter of 9.7 mm. Finally, the results show that the simulation results and experimental results of the surface error of the mold are effectively converged, the PV (Peak to valley) values of the mold surface error are improved from 0.208 7 μm to 0.079 9 μm, and the surface roughness at the center is reduced from Ra 20 nm to Ra 10 nm. It is proved that the proposed sub-aperture polishing removal model based on the viscoelastic spherical small polishing tool is effective against the surface precision and surface quality control of micro-diameter aspheric molds.

Key words: spherical small polishing tool, aspheric mold, viscoelastic properties, pressure distribution model, surface accuracy

中图分类号: