[1] ALTINTAS Y,BUDAK E. Analytical prediction of stability lobes in milling[J]. CIRP Annals-Manufacturing Technology,1995,44(1):357-362. [2] INSPERGER T,STEPAN G. Updated semi-discretization method for periodic delay-differential equations with discrete delay[J]. International Journal for Numerical Methods in Engineering,2004,61:117-141. [3] INSPERGER T,STEPAN G,TURI J. On the higher-order semi-discretizations for periodic delayed systems[J]. Journal of Sound and Vibration,2008,313(1):334-341. [4] WAN M,ZHANG W H,DANG J W,et al. A unified stability prediction method for milling process with multiple delays[J]. International Journal of Machine Tools and Manufacture,2010,50(1):29-41. [5] DING Y,ZHU L M,ZHANG X J,et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture,2010,50(5):502-509. [6] LI M Z,ZHANG G J,HUANG Y. Complete discretization scheme for milling stability prediction[J]. Nonlinear Dynamics,2013,71(1-2):187-199. [7] LI Z Q,YANG Z K,PENG Y R,et al. Prediction of chatter stability for milling process using Runge-Kutta-based complete discretization method[J]. The International Journal of Advanced Manufacturing Technology,2016,86(1):943-952. [8] QIN C J,TAO J F,LIU C L. A novel stability prediction method for milling operations using the holistic-interpolation scheme[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2019,233(13):4463-4475. [9] DAI Y B,LI H K,XING X Y,et al. Prediction of chatter stability for milling process using precise integration method[J]. Precision Engineering,2018,52:152-157. [10] LOU W D,QIN G H,ZUO D W. Investigation on Cotes-formula-based prediction method and its experimental verification of milling stability[J]. Journal of Manufacturing Processes,2021,64:1077-1088. [11] WAN M,DANG X B,ZHANG W H,et al. Optimization and improvement of stable processing condition by attaching additional masses for milling of thin-walled workpiece[J]. Mechanical Systems and Signal Processing,2018,103:196-215. [12] YUAN H,WAN M,YANG Y,et al. A tunable passive damper for suppressing chatters in thin-wall milling by considering the varying modal parameters of the workpiece[J]. The International Journal of Advanced Manufacturing Technology,2019,104(9):4605-4616. [13] 秦国华,娄维达,吴竹溪,等. 基于过程阻尼和结构模态耦合的铣削稳定性分析与实验验证[J]. 中国科学:技术科学,2020,50(9):1211-1225. QIN Guohua,LOU Weida,WU Zhuxi,et al. Milling stability analysis and validation based on the coupling of process damping and structural mode[J]. Sci. Sin. Tech.,2020,50(9):1211-1225. [14] 张洁,刘成颖,郑烽,等. 基于铣削动力学的刀具强迫振动抑制研究[J]. 机械工程学报,2018,54(17):94-99. ZHANG Jie,LIU Chengying,ZHENG Feng,et. al. Research on suppression of the forced vibration of the cutter based on the milling dynamics[J]. Journal of Mechanical Engineering,2018,54(17):94-99. [15] 曾莎莎,彭卫平,雷金. 基于混合算法的薄壁件铣削加工工艺参数优化[J]. 中国机械工程,2017,28(7):842-845,851. ZENG Shasha,PENG Weiping,LEI Jin. Optimization of milling process parameters based on hybrid algorithm for thin-walled workpieces[J]. China Mechanical Engineering,2017,28(7):842-845,851. [16] 胡瑞飞,殷鸣,刘雁,等. 切削稳定性约束下的铣削参数优化技术研究[J]. 机械工程学报,2017,53(5):190-198. HU Ruifei,YIN Ming,LIU Yan,et. al. Optimization of milling parameters under constrain of process stability[J]. Journal of Mechanical Engineering,2017,53(5):190-198. [17] 曹宏瑞,陈雪峰,何正嘉. 主轴-切削交互过程建模与高速铣削参数优化[J]. 机械工程学报,2013,49(5):161-166. CAO Hongrui,CHEN Xuefeng,HE Zhengjia. Modeling of spindle-process interaction and cutting parameters optimization in high-speed milling[J]. Journal of Mechanical Engineering,2013,49(5):161-166. [18] RINGGAARD K,MOHAMMADI Y,MERRILD C,et al. Optimization of material removal rate in milling of thin-walled structures using penalty cost function[J]. International Journal of Machine Tools and Manufacture,2019,145:103430-1-15. [19] XIAO Y M,JIANG Z G,GU Q,et al. A novel approach to CNC machining center processing parameters optimization considering energy-saving and low-cost[J]. Journal of Manufacturing Systems,2021,59:535-548. [20] MOKHTARI A,JALILI M M,MAZIDI A. Optimization of different parameters related to milling tools to maximize the allowable cutting depth for chatter-free machining[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2021,235(1-2):230-241. [21] DENG C Y,SHU J,MA Y,et al. Multi-objective modelling and optimal parameter selection of a multi-pass milling process considering uncertain milling stability constraint[J]. The International Journal of Advanced Manufacturing Technology,2022:1-16. [22] MAHDAVINEJAD R A,KHANI N,FAKHRABADI M M S. Optimization of milling parameters using artificial neural network and artificial immune system[J]. Journal of Mechanical Science and Technology,2012,26(12):4097-4104. [23] 郭强,李红霞,李玉晓. 基于改进粒子群算法的数控加工参数优化研究[J]. 机械制造与自动化,2021,50(3):132-135. GUO Qiang,LI Hongxia,LI Yuxiao. Research on optimization of NC machining parameters based on improved particle swarm optimization[J]. Machine Building & Automation,2021,50(3):132-135. [24] 刘献礼,孙庆贞,岳彩旭,等. 基于数据挖掘技术的钛合金铣削工艺参数优化[J]. 计算机集成制造系统,2022(8):2240-2248. LIU Xianli,SUN Qingzhen,YUE Caixu,et. al. Optimization of milling process parameters of titanium alloy based on data mining technology[J]. Computer Integrated Manufacturing Systems,2022(8):2240-2248. [25] 邓聪颖,叶波,禄盛,等. 基于切削稳定性与表面质量约束的铣削工艺参数优化研究[J]. 仪器仪表学报,2021,42(11):190-199. DENG Congying,YE Bo,LU Sheng,et. al. Optimization of milling process parameters considering the constraints of cutting stability and surface quality[J]. Chinese Journal of Scientific Instrument,2021,42(11):190-199. [26] 巩超光,胡天亮,叶瑛歆. 基于数字孪生的铣削参数动态多目标优化策略[J]. 计算机集成制造系统,2021,27(2):478-486. GONG Chaoguang,HU Tianliang,YE Yingxin. Dynamic multi-objective optimization strategy of milling parameters based on digital twin[J]. Computer Integrated Manufacturing Systems,2021,27(2):478-486. [27] BERRUT J P,TREFETHEN L N. Barycentric lagrange interpolation[J]. SIAM Review,2004,46(3):501-517. [28] DING Y,ZHU L M,ZHANG X J,et al. Second-order full-discretization method for milling stability prediction[J]. International Journal of Machine Tools and Manufacture,2010,50(5):926-932. [29] 张正旺,李爱平,鲍进,等. 基于主轴系统动态行为的高速铣削工艺参数优化[J]. 同济大学学报,2015,43(1):113-120. ZHANG Zhengwang,LI Aiping,BAO Jin,et al. Parameters optimization of high speed milling based on the dynamic behavior of spindle system[J]. Journal of Tongji University,2015,43(1):113-120. [30] 李初晔,王海涛,王增新. 铣削加工过程中的材料去除率计算[J]. 工具技术,2016,50(1):55-60. LI Chuye,WANG Haitao,WANG Zengxin. Milling material removal process calculation[J]. Tool Engineering,2016,50(1):55-60. [31] HORNIK K M,STINCHCOMB M,WHITE H. Multilayer feedforward networks are universal approximator[J]. Neural Networks,1989,2(5):359-366. [32] DEB K,PRATAP A,AGARWAL S,et al. A fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182-197. [33] 马贤智. 实用机械加工手册(修订版)[M]. 沈阳:辽宁科学技术出版社,2015. MA Xianzhi. Practical machining handbook (revised edition)[M]. Shenyang:Liaoning Science and Technology Press,2015. |