• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (17): 268-278.doi: 10.3901/JME.2023.17.268

• 数字化设计与制造 • 上一篇    下一篇

扫码分享

一种基于峰谷数据映射的粗糙度轮廓重构方法

周炜1, 赵岱岩1, 唐进元2   

  1. 1. 湖南科技大学难加工材料高效精密加工湖南省重点实验室 湘潭 411201;
    2. 中南大学高性能复杂制造国家重点实验室 长沙 410083
  • 收稿日期:2022-09-06 修回日期:2023-03-01 出版日期:2023-09-05 发布日期:2023-11-16
  • 通讯作者: 周炜(通信作者),男,1985年出生,博士,讲师,硕士研究生导师。主要研究方向为表面摩擦学、结构疲劳与断裂。E-mail:cnihelat@163.com
  • 作者简介:赵岱岩,男,1997年出生,硕士研究生。主要研究方向为表面完整性表征与建模。E-mail:zdy1409058515@126.com;唐进元,男,1962年出生,教授,博士研究生导师。主要研究方向为数字化设计与制造。E-mail:jytangcsu@163.com
  • 基金资助:
    国家自然科学基金(51705142)、湖南省自然科学基金(2018JJ3162)和湖南省研究生科研创新(CX20221052)资助项目。

A Reconstruction Method for Roughness Profile Based on Data Mapping of Peak and Valley

ZHOU Wei1, ZHAO Daiyan1, TANG Jinyuan2   

  1. 1. Hunan Provincial Key Laboratory of High Efficiency and Precision Machining of Difficult-to-Cut Material, Hunan University of Science and Technology, Xiangtan 411201;
    2. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, 410083
  • Received:2022-09-06 Revised:2023-03-01 Online:2023-09-05 Published:2023-11-16

摘要: 表面粗糙度具有较强随机与无序性,如何有效地模拟其统计特征是开展微尺度界面使役性能预测与优化的前提。为解决现有重构方法在效率、精度和稳定性方面无法兼备的问题,以采样峰谷分布之间数据映射关系为特征载体,提出一种可保留粗糙度形貌和统计参数、微凸体分布的重构新方法。针对理想高斯和实测非高斯加工表面,对所提方法重构效果进行了讨论,并与现有重构方法进行了对比分析。结果表明:所提方法优化了峰谷映射过程,克服了在自相关分布形式、相关长度和Johnson转换等方面的限制,能适应各种不同类型表面的重构,较其他方法在重构效率、精度和稳定性方面均具显著优势。

关键词: 粗糙度, 粗糙表面, 表面形貌, 重构, 建模

Abstract: As surface roughness has high randomness and disorder, how to effectively simulate its statistical characteristics becomes the primary prerequisite for the prediction and optimization of interface performance at micro-scale. In order to solve the problem that existing methods cannot satisfy efficiency, accuracy and stability simultaneously, a new reconstruction method is put forward. The proposed method takes sampled data mapping relationship between peak and valley distributions as characteristic carrier and can preserve roughness topography parameters, statistical parameters and asperity distribution. The performance of the proposed method is discussed and is compared with those of existing methods for ideal Gaussian and measured non Gaussian machined surfaces. The results show that the proposed method optimizes the peak-valley mapping process and overcomes the limitations on autocorrelation function form, correlation length and Johnson transformation. In consequence, the proposed method can simulate different types of surfaces and has significant advantages over other methods in efficiency, accuracy and stability.

Key words: roughness, rough surface, surface topography, reconstruction, modeling

中图分类号: