[1] PARK S,PARK S,RHEE S H. Influence of blade deformation and yawed inflow on performance of a horizontal axis tidal stream turbine[J]. Renewable Energy,2016,92:321-332. [2] 王浩,王立文,王涛,等. 航空发动机损伤叶片再制造修复方法与实现[J]. 航空学报,2016,37(3):1036-1048. WANG Hao,WANG Liwen,WANG Tao,et al. Method and implementation of remanufacture and repair of aircraft engine damaged blades[J]. Acta Aeronautica et Astronautica Sinica,2016,37(3):1036-1048. [3] 蔺小军,杨艳,吴广,等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报,2015,36(6):2074-2082. LIN Xiaojun,YANG Yan,WU Guang,et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica,2015,36(6):2074-2082. [4] ZHU Z Q,CHEN Z T,ZHANG Y. A novel polishing technology for leading and trailing edges of aero-engine blade[J]. The International Journal of Advanced Manufacturing Technology,2021,116(5):1871-1880. [5] GUO J,SUZUKI H,MORITA S,et al. A real-time polishing force control system for ultraprecision finishing of micro-optics[J]. Precision Engineering,2013,37(4):787-792. [6] TIAN F,LI Z,LV C,et al. Polishing pressure investigations of robot automatic polishing on curved surfaces[J]. The International Journal of Advanced Manufacturing Technology,2016,87(1-4):639-646. [7] WANG W,LIU F,LIU Z,et al. Prediction of depth of cut for robotic belt grinding[J]. The International Journal of Advanced Manufacturing Technology,2017,91(1-4):699-708. [8] TIAN F,LV C,LI Z,et al. Modeling and control of robotic automatic polishing for curved surfaces[J]. CIRP Journal of Manufacturing Science and Technology,2016,14:55-64. [9] SONG Yixu,LV Hongbo,YANG Zehong. An adaptive modeling method for a robot belt grinding process[J]. IEEE/ASME Transactions on Mechatronics,2011,17(2):309-317. [10] ZHAO P,SHI Y. Composite adaptive control of belt polishing force for aero-engine blade[J]. Chinese Journal of Mechanical Engineering,2013,26(5):988-996. [11] SONG Y,LIANG W,YANG Y. A method for grinding removal control of a robot belt grinding system[J]. Journal of Intelligent Manufacturing,2012,23(5):1903-1913. [12] SUN Y,VU T T,HALIL Z,et al. Material removal prediction for contact wheels based on a dynamic pressure sensor[J]. The International Journal of Advanced Manufacturing Technology,2017,93(1-4):945-951. [13] MOHAMMAD A E K,HONG J,WANG D. Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach[J]. Robotics and Computer-Integrated Manufacturing,2018,49:54-65. [14] RAFIEIAN F,GIRARDIN F,LIU Z,et al. Angular analysis of the cyclic impacting oscillations in a robotic grinding process[J]. Mechanical Systems and Signal Processing,2014,44(1-2):160-176. [15] XiAO G,HUANG Y. Adaptive belt precision grinding for the weak rigidity deformation of blisk leading and trailing edge[J]. Advances in Mechanical Engineering,2017,9(10):1-12. [16] 王杰. 基于金属橡胶的砂带磨削接触理论及实验研究[D]. 重庆:重庆大学,2019. WANG Jie. Research on contact theory of abrasive belt grinding with metal rubber[D]. Chongqing:Chongqing University,2019. [17] 樊文刚,程继发,吕洪宾,等. 波浪型面钢轨砂带打磨时变接触行为与仿真研究[J]. 机械工程学报,2018,54(4):87-92. FAN Wengang,CHENG Jifa,LÜ Hongbin,et al. Research on time-varying contact behavior and simulation for waved rail surface grinding by abrasive belt[J]. Journal of Mechanical Engineering,2018,54(4):87-92. [18] 李建勇,程继发,樊文刚,等. 砂带磨削静态接触理论建模与有限元仿真[J]. 北京交通大学学报,2018,42(6):125-130. LI Jianyong,CHENG Jifa,FAN Wengang,et al. Theory modeling and finite element simulation of belt grinding static contact[J]. Journal of Beijing Jiaotong University,2018,42(6):125-130. [19] 吕洪宾. 叶片类曲面数控砂带磨削接触理论与工艺优化方法研究[D]. 北京:北京交通大学,2019. LÜ Hongbin. Study on contact theory and process optimization methods of CNC belt grinding for blade surfaces[D]. Beijing:Beijing Jiaotong University,2019. [20] CHEN B,QI J,ZHANG D. An adaptive parameters adjustment and planning method for robotic belt grinding using modified quality model[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2021,235(4):605-615. [21] 黄云,肖贵坚,邹莱. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报,2019,40(3):53-72. HUANG Yun,XIAO Guijian,ZOU Lai. Current situation and development trend of robot precise belt grinding for aero-engin blade[J]. Acta Aeronautica et Astronautica Sinica,2019,40(3):53-72. [22] ARUNACHALAM A P S,IDAPALAPATI S,SUBBIAH S,et al. A novel retractable stiffener-based disk-shaped active compliant polishing tool[J]. Journal of Manufacturing Processes,2020,51:83-94. [23] 刘斐,王伟,王雷,等. 接触轮变形对机器人砂带磨削深度的影响[J]. 机械工程学报,2017,53(5):86-92. LIU Fei,WANG Wei,WANG Gang,et al. Effect of contact wheel's deformation on cutting depth for robotic belt grinding[J]. Journal of Mechanical Engineering,2017,53(5):86-92. [24] 樊文刚,刘月明,王文玺,等. 基于弹性赫兹接触的钢轨砂带打磨材料去除建模研究[J]. 机械工程学报,2018,54(15):191-198. FAN Wengang,LIU Yueming,WANG Wenxi,et al. Research on modeling of material removal for rail grinding by abrasive belt based on elastic hertzian contact[J]. Journal of Mechanical Engineering,2018,54(15):191-198. [25] MOONEY M. A theory of large elastic deformation[J]. Journal of Applied Physics,1940,11(9):582-592. |