[1] 朱大虎, 徐小虎, 蒋诚, 等. 复杂叶片机器人磨抛加工工艺技术研究进展[J]. 航空学报, 2021, 42(10):524265. ZHU Dahu, XU Xiaohu, JIANG Cheng, et al. Research progress in robotic grinding technology for complex blades[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10):524265. [2] LIU De, SHI Yaoyao, LIN Xiaojun, et al. Study on improving surface residual stress of polished blade after polishing based on two-stage parameter method[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5):1491-1503. [3] ZHOU Pei, ZHAO Xingwei, TAO Bo, et al. Time-varying isobaric surface reconstruction and path planning for robotic grinding of weak-stiffness workpieces[J]. Robotics and Computer-Integrated Manufacturing, 2020, 64:101945. [4] LV Yuanjian, PENG Zhen, QU Chao, et al. An adaptive trajectory planning algorithm for robotic belt grinding of blade leading and trailing edges based on material removal profile model[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66:101987. [5] 徐小虎. 压气机叶片机器人砂带磨抛加工关键技术研究[D]. 武汉:华中科技大学, 2019. XU Xiaohu. Research on the key technology of robotic abrasive belt grinding of compressor blade[D]. Wuhan:Huazhong University of Science & Technology, 2019. [6] ZOU Lai, LIU Xifan, REN Xu, et al. An integrated polishing method for compressor blade surfaces[J]. International Journal of Advanced Manufacturing Technology, 2016:1-11. [7] LI Zhaorui, ZOU Lai, YIN Jiachao, et al. Investigation of parametric control method and model in abrasive belt grinding of nickel-based superalloy blade[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5-8):3301-3311. [8] XIAN Chao, SHI Yaoyao, LIN Xiaojun, et al. Force modeling for polishing aero-engine blades with abrasive cloth wheels[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(11):5255-5267. [9] WANG Zhiwei, LIN Xiaojun, SHI Yaoyao, et al. Reducing roughness of freeform surface through tool orientation optimization in multi-axis polishing of blisk[J]. International Journal of Advanced Manufacturing Technology, 2020, 108(1-4):1-13. [10] 陈志同, 张云, 刘瑞松, 等. 航空发动机叶片矩形阵列磨削加工技术[J]. 航空制造技术, 2018, 61(9):34-39. CHEN Zhitong, ZHANG Yun, LIU Ruisong, et al. Rectangular array grinding process of aero-engine blade with complex surface[J]. Aeronautical Manufacturing Technology, 2018, 61(9):34-39. [11] STAMA. System 5 two place[EB/OL]. https://stama.de/1/overview-machining-centers/system-5-two-place/, 2022-04-15. [12] CHIRON. Multi-spindle machining[EB/OL]. https://chiron.de/en/products/technology/multi-spindle-machining, 2022-04-15. [13] 蔺小军, 崔彤, 杨碧颖, 等. 薄壁叶片叶型多工序加工检验模型建立方法[J]. 航空学报, 2019, 40(11):324-333. LIN Xiaojun, CUI Tong, YANG Biying, et al. Method for establishing machining and inspection model of multi-stage machining processes of thin-walled blades[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):324-333. [14] 郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报, 2018, 54(2):216-224. ZHENG Siyu, TENG Jinfang, QING Xiaoqing. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering, 2018, 54(2):216-224. [15] 翟德慧, 张发平, 阎艳, 等. 基于加工特征向量的制造设备分组算法研究[J]. 现代制造工程, 2016(1):1-6, 72. ZHAI Dehui, ZHANG Faping, YAN Yan, et al. Machining feature vector based algorithm for manufacturing equipment grouping[J]. Modern Manufacturing Engineering, 2016(1):1-6, 72. [16] 白俊杰, 龚毅光, 王宁生, 等. 多目标柔性作业车间分批优化调度[J]. 计算机集成制造系统, 2010, 16(2):396-403. BAI Junjie, GONG Yiguang, WANG Ningsheng, et al. Multi-objective flexible Job Shop scheduling with lot-splitting[J]. Computer Integrated Manufacturing Systems, 2010, 16(2):396-403. [17] 覃斌, 阎春平, 汪科, 等. 支持多任务集中下料的零件分组优化方法[J]. 计算机集成制造系统, 2012, 18(5):943-949. QIN bin, YAN Chunping, WANG Ke, et al. Grouping optimization method of large-scale parts supporting centralized cutting stock[J]. Computer Integrated Manufacturing Systems, 2012, 18(5):943-949. [18] 戚得众, 饶运清, 余天, 等. 板类零件分组下料优化研究[J]. 机械设计与制造, 2015(6):129-133. QI Dezhong, RAO Yunqing, YU Tian, et al. Research on parts grouping cutting optimization of plate parts[J]. Machinery Design & Manufacture, 2015(6):129-133. [19] 吕迅, 张冬峰, 金杨福. 软脆光学镜片多件抛光的表面质量一致性研究[J]. 轻工机械, 2017(6):50-53, 60. LÜ Xun, ZHANG Dongfeng, JIN Yangfu. Consistency of surface quality on batch polishing of soft-brittle optical lens[J]. Light Industry Machinery, 2017(6):50-53, 60. [20] MENG Fanjun, LI Xun, CHEN Zhitong, et al. Study on the cantilever grinding process of aero-engine blade[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2014, 228(11):1393-1400. [21] 谢明轩. 整体叶盘数控抛光工具研制及工艺研究[D]. 北京:北京航空航天大学, 2020. XIE Mingxuan. Development and technology research of CNC polishing tool for blisk[D] Beijing:Beihang University, 2020. [22] ZHANG Yun, CHEN Zhitong, ZHU Zhengqing, et al. A sampling method for blade measurement based on statistical analysis of profile deviations[J]. Measurement, 2020, 163(1):107949. [23] JIANG Ruisong, WANG Wenhu, ZHANG Dinghua, et al. A practical sampling method for profile measurement of complex blades[J]. Measurement, 2016, 81:57-65. [24] BUNN P, OSTROVSKY R. Oblivious sampling with applications to two-partyk-means clustering[J]. Journal of Cryptology, 2020, 33(3):1362-1403. |