• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (10): 210-225.doi: 10.3901/JME.2023.10.210

• 运载工程 • 上一篇    下一篇

扫码分享

轮对非线性随机动力学模型稳定性及分岔研究

王鹏1,2, 杨绍普1,2, 刘永强1,3, 刘鹏飞1, 赵义伟1,2, 张兴1,2   

  1. 1. 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室 石家庄 050043;
    2. 石家庄铁道大学交通运输学院 石家庄 050043;
    3. 石家庄铁道大学机械工程学院 石家庄 050043
  • 收稿日期:2022-10-12 修回日期:2023-03-01 出版日期:2023-05-20 发布日期:2023-07-19
  • 通讯作者: 刘永强(通信作者),男,1983年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制、车辆状态监测与故障诊断。E-mail:liuyq@stdu.edu.cn E-mail:liuyq@stdu.edu.cn
  • 作者简介:王鹏,男,1989年出生,博士研究生。主要研究方向为车辆系统动力学与控制。E-mail:wangp@stdu.edu.cn
  • 基金资助:
    国家自然科学基金(11790282,12172235,12072208,52072249,U1934201)和石家庄铁道大学国家重点实验室开放基金(ZZ2021-13)资助项目。

Research on Stability and Bifurcation of Nonlinear Stochastic Dynamic Model of Wheelset

WANG Peng1,2, YANG Shaopu1,2, LIU Yongqiang1,3, LIU Pengfei1, ZHAO Yiwei1,2, ZHANG Xing1,2   

  1. 1. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043;
    2. School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043;
    3. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043
  • Received:2022-10-12 Revised:2023-03-01 Online:2023-05-20 Published:2023-07-19

摘要: 针对轮对系统的随机动力学问题,综合考虑等效锥度和悬挂刚度的随机因素影响,建立含有陀螺效应的非线性轮轨接触关系的轮对模型,研究轮对系统随机稳定性和随机Hopf分岔。利用随机平均法将轮对系统转化为一维扩散过程,通过判定奇异边界的性态,得到轮对系统随机失稳条件和失稳临界速度。理论推导求得平稳概率密度和联合概率密度函数,分析概率密度函数拓扑结构演化,确定轮对系统随机Hopf分岔类型。探究随机因素对失稳临界速度和Hopf分岔域的影响,仿真结果验证了理论分析的正确性。结果表明,扩散过程的边界性态决定了轮对系统的随机稳定性,左边界特征标值cL=1是随机失稳的临界状态。考虑随机因素后,轮对系统的稳态概率密度函数随着分岔参数增加发生两次定性性态改变,分别对应轮对系统的随机D分岔和随机P分岔,且两种随机分岔的临界速度均随着随机参激强度的增大而减小。

关键词: 随机系统, 随机平均法, 奇异边界, 蛇行稳定性, 随机分岔

Abstract: Aiming at the stochastic dynamics of the wheelset system, considering the influence of the stochastic factors of the equivalent conicity and suspension stiffness, a wheelset model of nonlinear wheel-rail contact relationship with gyroscopic effect is established to investigate the stochastic stability and stochastic Hopf bifurcation of the wheelset system. The stochastic average method transforms the wheelset system into a one-dimensional diffusion process. By judging the behavior of the singular boundary, the stochastic instability conditions and critical speed of the wheelset system are obtained. The stationary probability density function and the joint probability density function are derived theoretically. The topological structure evolution of the probability density function is analyzed, and the type of stochastic Hopf bifurcation of the wheelset system is determined. The influence of stochastic factors on the critical speed of instability and the Hopf bifurcation region is explored. The simulation results verify the correctness of the theoretical analysis. The results reveal that the stochastic stability of the wheelset system is determined by the boundary behavior of the diffusion process, and the left boundary eigenvalue cL=1 is the critical state of stochastic instability. After considering the stochastic factors, the steady-state probability density function of the wheelset system has two qualitative changes with the increase of the bifurcation parameters, which correspond to the stochastic D bifurcation and stochastic P bifurcation of the wheelset system respectively, and the critical speeds of the two stochastic bifurcations decrease with the increase of the random parameter intensity.

Key words: stochastic system, stochastic average method, singular boundary, hunting stability, stochastic bifurcation

中图分类号: