• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2023, Vol. 59 ›› Issue (10): 226-235.doi: 10.3901/JME.2023.10.226

• 运载工程 • 上一篇    下一篇

扫码分享

基于YOLO网络的车辆四点标定测距研究

梁忠超1,2, 黄茁1, 胡兴1, 陈杰1   

  1. 1. 东北大学机械工程与自动化学院 沈阳 110819;
    2. 东北大学流程工业综合自动化国家重点实验室 沈阳 110819
  • 收稿日期:2022-11-01 修回日期:2023-02-25 出版日期:2023-05-20 发布日期:2023-07-19
  • 通讯作者: 陈杰(通信作者),男,1988年出生,博士,副教授,博士研究生导师。主要研究方向为智能机器人等。E-mail:chenjie@me.neu.edu.cn E-mail:chenjie@me.neu.edu.cn
  • 作者简介:梁忠超,男,1984年出生,博士,副教授,博士研究生导师。主要研究方向为智能车辆、移动机器人、月球车等。E-mail:liangzc@me.neu.edu.cn;黄茁,男,1997年出生。主要研究方向为智能车的视觉感知和轨迹跟踪控制。E-mail:1549495207@qq.com;胡兴,男,1997年出生。主要研究方向为车辆的智能测距、车辆的运动规划。E-mail:1757940901@qq.com
  • 基金资助:
    国家自然科学基金(51975109)、中央高校基本科研业务费(N2103018)和流程工业综合自动化国家重点实验室开放课题基金(2021-KF-11-02) 资助项目。

Research on Distance Measurement Using Vehicle Four-point Calibration Based on YOLO Neural Network

LIANG Zhongchao1,2, HUANG Zhuo1, HU Xing1, CHEN Jie1   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819;
    2. State Key Laboratory of Synthetical Automation of Process Industry, Northeastern University, Shenyang 110819
  • Received:2022-11-01 Revised:2023-02-25 Online:2023-05-20 Published:2023-07-19

摘要: 精准且快速的车距测量是车辆实现自动驾驶和避障控制中不可或缺的数据依据之一,同时也是智能车辆安全行驶的必要环节之一。基于相机成像原理和Yolo only look once (YOLO)深度神经网络,提出一种快速且有效的单目相机测距方法,即四点标定测距算法。这种方法将深度神经网络和测距算法结合,能够实现快速识别目标车辆并计算与本车的相对距离信息。在车辆目标识别方面,基于Common objects in context(COCO)数据集和YOLO网络模型下的训练权重,完成对与车辆检测框的提取。在相对距离信息获取方面,基于相机小孔成像原理建立动态的纵、横向相机测距模型;同时,建立YOLO网络检测框中像素坐标系与实际测距中世界坐标系的解析方程,提出一种快速四点标定测距法。最后,进行四点标定测距法和内参数标定测距法的实车对比试验,试验结果表明,相较于内参数标定测距方法,提出的四点标定测距法能够省去繁琐的内参数标定步骤,同时测量误差在25 m范围内降低了1%左右,保持了较高的测距精度。

关键词: 车距测量, 神经网络, 自动驾驶

Abstract: Accurate and fast vehicle distance measurement is the indispensable data basic for vehicles to achieve autonomous driving and obstacle avoidance control, and it is also a necessary component for safe driving of intelligent vehicles. Based on the camera imaging principle and the Yolo only look once(YOLO) deep neural network, a fast and effective monocular camera ranging method is proposed, i.e., four-point calibration distance measurement algorithm. This algorithm combines the deep neural network and the ranging algorithm to quickly identify the target vehicle and calculate with the self-vehicle. In terms of the vehicle identification, the detection box is collected through the Common objects in context(COCO) data set and the YOLO network model. To obtain the information of the relative distance, the dynamic vertical and horizontal camera ranging model are established according to the principle of camera pinhole imaging. Meanwhile, the analytic equations of pixel coordinate system in YOLO network detection box and the world coordinate system in actual ranging are established, and the fast four-point calibration distance measurement method is proposed. Finally, the proposed four-point calibration distance measurement method is compared with the internal parameter calibration ranging method in the experiments. The experimental results show that the measurement error is reduced by about 1% within the range of 25 m, and the complex internal parameter calibration steps can be omitted.

Key words: vehicle distance measurement, neural networks, autonomous driving

中图分类号: