[1] 丁宏钰, 石照耀, 岳会军, 等. 国内外双足人形机器人驱动器研究综述[J]. 哈尔滨工程大学学报, 2021, 42(7):936-945. DING Hongyu, SHI Zhaoyao, YUE Huijun, et al. A review on biped humanoid robot actuator in China and overseas[J]. Journal of Harbin Engineering University, 2021, 42(7):936-945. [2] REDFORD N A, STRWSER P, HAMBUCHEN K, et al. Valkyrie:NASA's first bipedal humanoid robot[J]. Journal of Field Robotics, 2015, 32(3):397-419. [3] Reher J, Cousineau E A, Hereid A, et al. Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS[C]//IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden:IEEE, 2016:1794-1801. [4] 俞志伟, 王立权. 双足机器人并联踝关节优化设计[J].机械工程学报, 2009, 45(11):52-57. YU Zhiwei, WANG Liquan. Optimal design for biped robot parallel ankle joint[J]. Journal of Mechanical Engineering, 2009, 45(11):52-57. [5] 陈子明, 尹涛, 潘泓, 等. 一种三自由度并联踝关节康复机构[J]. 机械工程学报, 2020, 56(21):70-77. CHEN Ziming, YIN Tao, PAN Hong, et al. 3-DOF parallel ankle rehabilitation mechanism[J]. Journal of Mechanical Engineering, 2020, 56(21):70-77. [6] NEGRELLO F, GARABINI M, GATELANO M G., et al. A modular compliant actuator for emerging high performance and fall-resilient humanoids[C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Korea (South), IEEE, 2015:414-420. [7] Lohmeier S, Buschmann T, Ulbrich H, Pfeiffer F. Modular joint design for performance enhanced humanoid robot LOLA[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA:IEEE, 2006:88-93. [8] Lohmeier S. Design and realization of a humanoid robot for fast and autonomous bipedal locomotion[D]. Munich:Technical University of Munich, 2010. [9] ISHIKAWA T, MIYAZAKI S, YAMAMOTO T. Legged mobile robot and swing structure:Japan, JP2011224772A[P]. 2011-11-10. [10] ISHIKAWA T, MIYAZAKI S, YAMAMOTO T. Legged mobile robot and swing structure:Japan, JP5602057B2[P]. 2014-08-29. [11] Gim K G, Kim J, Yamane K. Design of a serial-parallel hybrid leg for a humanoid robot[C]//2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia:IEEE, 2018:6076-6081. [12] Gim K G, Kim J, Yamane K. Design and fabrication of a bipedal robot using serial-parallel hybrid leg mechanism[C]//International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain:IEEE, 2018:5095-5100. [13] HURST J, JONES M S, ABATE A M. Leg configuration for spring-mass legged locomotion:USA, US10189519B2[P]. 2019-1-29. [14] chignoli m, kim d, stanger-jones e, et al. The MIT Humanoid Robot:Design, Motion Planning, and Control For Acrobatic Behaviors[C]//International Conference on Humanoid Robots, Munich, Germany:IEEE, 2021:1-8. [15] ESSER J, SHIVESH K, HEINER P, et al. Design, analysis and control of the series-parallel hybrid RH5 humanoid robot[C]//International Conference on Humanoid Robots (Humanoids), Munich, Germany:IEEE, 2021:400-407. [16] 梶田秀司. 仿人机器人[M]. 北京:清华大学出版社, 2007. SHUYUJI K. Humanoid robot[M]. Beijing:Tsinghua University Press, 2007. [17] 肖惠, 滑东红, 郑秀瑗. 中国成年人人体质心的研究[J]. 人类工效学, 1998(3):3-5. XIAO Hui, HUA Donghong, ZHENG Xiuyuan. Research on the center of mass of Chinese adults[J]. Chinese Journal of Ergonomics, 1998(3):3-5 [18] KANEKO K, KANEHIRO F, KAJITA S, et al. Humanoid robot HRP-2[C]//IEEE International Conference on Robotics and Automation, New Orleans, LA, USA:IEEE, 2004:1083-1090. [19] NEGRELLO F, GARABINI M, CATALANO MG, et al. WALK-MAN humanoid lower body design optimization for enhanced physical performance[C]//IEEE International Conference on Robotics & Automation, Stockholm, Sweden:IEEE, 2016:1817-1824. [20] JUNG T, LIM J, BAE H, et al. Development of the humanoid disaster response platform DRC-HUBO+[J]. IEEE Transactions on Robotics, 2018, 34(1):1-17. [21] ENGLSBERGER J, WERNER A, OTT C, et al. Overview of the torque-controlled humanoid robot TORO[C]//IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain:IEEE, 2014:916-923. [22] CHEVALLEREAU C, BESSONET G, ABBA G, et al. Bipedal robots:Modeling, design and walking synthesis[M]. London:ISTE Press, 2009. [23] WENSING PM, WANG A, SEOK S, et al. Proprioceptive Actuator design in the MIT Cheetah:Impact Mitigation and High-Bandwidth Physical Interaction for Dynamic Legged Robots[J]. IEEE transactions on robotics, 2017(99):1-14. [24] JONES M, RENJEWSKI D, GRIMES J. ATRIAS:Design and validation of a tether-free 3D-capable spring-mass bipedal robot[J]. International Journal of Robotics Research, 2016, 35(12):1-31. [25] ZHOU C, NIKOS T. On the comprehensive kinematics analysis of a humanoid parallel ankle mechanism[J]. Journal of Mechanisms and Robotics, 2018, 10(5):1-9. [26] HU Yisen, WU Xinyu, DING Hongyu, et al. Study of series-parallel mechanism used in legs of biped robot[C]//20217th International Conference on Control, Automation and Robotics (ICCAR), Singapore:IEEE, 2021:97-102. [27] DING Hongyu, SHI Zhaoyao, HU Yisen, et al. Lightweight design optimization for legs of bipedal humanoid robot[J]. Structural and Multidisciplinary Optimization, 2021:1-14. [28] ZHU T, HOOKS J, HONG D. Design, modeling, and analysis of a liquid cooled proprioceptive actuator for legged robots[C]//International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China:IEEE, 2019:36-43. |