• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (13): 71-80.doi: 10.3901/JME.2022.13.071

• 机器人及机构学 • 上一篇    下一篇

扫码分享

多构态仿生弹性驱动器结构设计及性能研究

魏敦文1, 高涛1, 张翔宇1, 葛文杰2, 彭倍1   

  1. 1. 电子科技大学机械与电气工程学院 成都 611731;
    2. 西北工业大学机电学院 西安 710072
  • 收稿日期:2021-07-24 修回日期:2021-12-03 出版日期:2022-07-05 发布日期:2022-09-13
  • 通讯作者: 彭倍(通信作者),男,1977年出生,博士,教授,博士研究生导师。主要研究方向为机器人技术与微纳机电系统。E-mail:beipeng@uestc.edu.cn
  • 作者简介:魏敦文,男,1986年出生,博士,副教授。主要研究方向为仿生机器人机构学与控制,无人系统导航与智能决策。E-mail:weidunwen@uestc.edu.cn;高涛,男,1979年出生,博士,教授。主要研究方向为智能机器人、仿生机器人。E-mail:gaotao@uestc.edu.cn;张翔宇,男,1997年出生,硕士研究生。主要研究方向为机构学与机器人、仿生机器人和弹性驱动器及控制方法。E-mail:mello205@163.com;葛文杰,男,1958年出生,博士,教授,博士研究生导师。主要研究方向为仿生跳跃机器人以及柔性机翼拓扑优化。E-mail:gwj@nwpu.edu.cn
  • 基金资助:
    国家自然科学基金(51705066)和教育部产学合作协同育人(202101398040)资助项目。

Structure Design and Performance Research of Multi-configuration Bionic Elastic Actuator

WEI Dunwen1, GAO Tao1, ZHANG Xiangyu1, GE Wenjie2, PENG Bei1   

  1. 1. School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731;
    2. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072
  • Received:2021-07-24 Revised:2021-12-03 Online:2022-07-05 Published:2022-09-13

摘要: 以生物肌肉肌腱为灵感,基于变胞机构思想设计了一种多构态仿生弹性驱动器,其中驱动元件和弹性元件通过变构态行星差速齿轮机构实现高效耦合。根据机器人关节不同运动相差异化功率需求,控制弹性驱动器构态的切换,实现输出功率调制和能量调节,从而提高机器人系统的运动性能和能量效率。在此基础上,设计了基于多构态仿生弹性驱动的单足跳跃机器人并验证不同驱动模式情况下的跳跃性能。实验结果表明,与传统齿轮减速驱动器相比,多构态仿生弹性驱动器有效提高瞬时输出功率,使单足跳跃机器人跳跃高度提高了6.8%。跳跃机器人落地过程中弹性元件压缩吸收动能,减小碰撞冲击的同时提高了能量利用率,证明了多构态仿生弹性驱动器在输入能量耦合和在动态输出功率调制方面的可行性。

关键词: 弹性驱动器, 多构态弹性驱动器, 变胞机构, 单足跳跃机器人

Abstract: Inspired by biological muscles and tendons, one multi-configuration bionic elastic actuator is proposed and designed based on the idea of metamorphic mechanism, in which the driving component and the elastic component are coupled efficiently by the metamorphic planetary differential gear mechanism. According to the differentiated power requirements in different motion phases of robot joints, the configuration switch of the elastic actuator is controlled to change the actuation modes, achieve output power modulation and energy adjustment, thereby improving the motion performance and energy efficiency of robot systems. On this basis, a single-legged hopping robot based on multi-configuration bionic elastic actuator is designed, and the jumping performances under different actuation modes are verified. The experimental results show that the multi-configuration bionic elastic actuated joint can effectively improve the instantaneous output power, and increase the jump height of the one-legged hopping robot by 6.8%, compared with the traditional geared reduction actuator. During the landing process of the one-legged hopping robot, the elastic component compresses and absorbs the kinetic energy, reduces impact, and improves the energy utilization rate. It proves the feasibility of the multi-configuration bionic elastic actuator in terms of input energy coupling and dynamic output power modulation.

Key words: elastic actuator, multi-configuration elastic actuator, metamorphic mechanism, single-legged hopping robot

中图分类号: