• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (23): 88-97.doi: 10.3901/JME.2022.23.088

• 机器人及机构学 • 上一篇    下一篇

扫码分享

基于三维软体驱动器的手部康复装置研究

马凯威1,2, 高爽1,2, 蒋振江1, 范保杰1, 徐丰羽1,2   

  1. 1. 南京邮电大学自动化学院 南京 210023;
    2. 东南大学复杂工程系统测量与控制教育部重点实验室 南京 210096
  • 收稿日期:2022-01-06 修回日期:2022-08-05 出版日期:2022-12-05 发布日期:2023-02-08
  • 通讯作者: 徐丰羽(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为机器人及自动化,机电一体化技术。E-mail:xufengyu598@163.com
  • 作者简介:马凯威,男,1990年出生,博士,讲师。主要研究方向为软体机器人与智能制造。E-mail:makaiwei@live.com
  • 基金资助:
    江苏省自然科学基金面上项目(BK20201379)、江苏省高等学校自然科学研究重大项目(21KJA460013)、江苏省“双创博士”项目(JSSCBS20210523)、东南大学复杂工程系统测量与控制教育部重点实验室开放课题基金(MCCSE2021A02)和南京邮电大学引进人才自然科学研究启动基金(NY220140)资助项目。

Research on Hand Rehabilitation Device Based on 3D Soft Actuator

MA Kaiwei1,2, GAO Shuang1,2, JIANG Zhenjiang1, FAN Baojie1, XU Fengyu1,2   

  1. 1. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023;
    2. Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096
  • Received:2022-01-06 Revised:2022-08-05 Online:2022-12-05 Published:2023-02-08

摘要: 针对手部康复装置结构复杂、穿戴舒适性差、制作成本高等问题,提出了一种基于三维软体驱动器的新型手部康复装置。首先,根据手部功能运动范围分析,设计了具有三空腔结构和纤维增强结构的三维软体驱动器。其次,利用Yeoh模型、虚功原理和结构分析,建立了以空气压强、纤维匝数为输入量,弯曲角度为输出量的数学模型。然后,通过有限元分析,确定了纤维匝数和建议工作压强,降低了数学模型的计算量。最后,使用3D打印技术和硅胶材料完成了样机的制作。为了验证以上理论,在软体驱动器综合实验平台上进行了性能测试。结果表明,该软体驱动器的最大弯曲角度、指尖力和相对误差分别为230°、1.08 N和25.04%;该装置可以模仿常见手势,抓取日常生活用品,能够满足基本的手部康复训练。

关键词: 三维软体驱动器, 手部康复装置, 弯曲理论建模, 有限元分析, 样机制作与测试

Abstract: Aiming at the problems of complex structure, poor wearing comfort and high manufacturing cost of hand rehabilitation device, a novel hand rehabilitation device based on 3D soft actuator is proposed. Firstly, according to the analysis of the functional range of motion of the hand, a 3D soft actuator with three-cavity structure and fiber-reinforced structure is designed. Secondly, using Yeoh model, virtual work principle and structural analysis, a mathematical model is established with air pressure and fiber turns as input and bending angle as output. Then, through finite element analysis, the number of fiber turns and the recommended working pressure are determined, which reduces the computational complexity of the model. Finally, the prototype is fabricated using 3D printing technology and silicone-rubber. To verify the above theory, the performance test is carried out on the soft actuator comprehensive experimental platform. The results show that the maximum bending angle, fingertip force and relative error of the soft actuator are 230 °, 1.08 N and 25.04 %, respectively. And the device can imitate common gestures and grab daily necessities, which can meet the basic hand rehabilitation training.

Key words: 3D soft actuator, hand rehabilitation device, bending theory modeling, finite element analysis, prototype fabrication and testing

中图分类号: