[1] R5. Assessment procedure for the high temperature response of structures, Issue 3[S]. Gloucester:British Energy, 2014. [2] American Society of Mechanical Engineers. 2013 ASME boiler & pressure vessel code, III-NH, Class 1 components in elevated temperature service[S]. New York:ASME, 2013. [3] RCC-MR. Design and construction rules for mechanical components of FBR nuclear islands[S]. Paris:AFCEN, 2007. [4] HOLMSTRÖM S, AUERKARI P, HOLDSWORTH S. Predicting creep strain response from rupture data and a robust creep curve model[C]//International Conference on Life Management and Maintenance for Power Plants, Helsinki, Finland, June 12-14, 2007. [5] 刘利强,张显程,谈建平,等. 严苛环境高温力学试验技术研究进展[J]. 机械工程学报, 2021, 57(16):3-15. LIU Liqiang, ZHANG Xiancheng, TAN Jianping, et al. Research progress of high temperature mechanical test technology in severe environment[J]. Journal of Mechanical Engineering, 2021, 57(16):3-15. [6] 王康康,王小威,温建锋,等. 蠕变断裂:从物理失效机制到结构寿命预测[J]. 机械工程学报, 2021, 57(16):132-152. WANG Kangkang, WANG Xiaowei, WEN Jianfeng, et al. Creep rupture:From physical failure mechanisms to lifetime prediction of structures[J]. Journal of Mechanical Engineering, 2021, 57(16):132-152. [7] 黄佳,贺斟酌,杨晓光,等. 镍基定向凝固高温合金蠕变寿命预测的改进方法[J]. 机械工程学报, 2022, 58(22):258-268. HUANG Jia, HE Zhenzhuo, YANG Xiaoguang, et al. Improved method for creep life prediction of nickel-based directionally solidified superalloys[J]. Journal of Mechanical Engineering, 2022, 58(22):258-268. [8] MAO J, ZHU J, LI X, et al. Effect of strain amplitude and temperature on creep-fatigue behaviors of 9-12% Cr steel[J]. Journal of Mechanical Science and Technology, 2022, 36(5):2265-2276. [9] RABOTNOV Y N, LECKIE F A, PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics, 1970, 37(1):249. [10] WILSHIRE B, SCHARNING P J. A new methodology for analysis of creep and creep fracture data for 9-12% chromium steels[J]. International Materials Reviews, 2008, 53(2):87-94. [11] YAO H T, XUAN F Z, WANG Z, et al. A review of creep analysis and design under multi-axial stress states[J]. Nuclear Engineering and Design, 2007, 237(18):1969-1986. [12] 涂善东. 高温结构完整性原理[M]. 北京:科学出版社, 2003. TU Shantung. Principle of high temperature structural integrity[M]. Beijing:Science Press, 2003. [13] DYSON B. Use of CDM in materials modeling and component creep life prediction[J]. Journal of Pressure Vessel Technology, 2000, 122(3):281-296. [14] MUSTATA R, HAYHURST D R. Creep constitutive equations for a 0.5Cr0.5Mo0.25V ferritic steel in the temperature range 565℃-675℃[J]. International Journal of Pressure Vessels and Piping, 2005, 82(5):363-372. [15] KOWALEWSKI Z L, HAYHURST D R, DYSON B F. Mechanisms-based creep constitutive equations for an aluminium alloy[J]. Journal of Strain Analysis, 1994, 29(4):309-316. [16] 牛田野,高永建,陶贤超,等. 核级SA-508 Gr.3 Cl.1材料拉伸与压缩蠕变行为的比较研究[J]. 机械工程学报, 2023, 59(4):96-104. NIU Tianye, GAO Yongjian, TAO Xianchao, et al. Comparison of tensile and compressive creep behavior of SA-508 Gr.3 Cl.1 steel for nuclear applications[J]. Journal of Mechanical Engineering, 2023, 59(4):96-104. [17] WU S, SONG H Y, PENG H Z, et al. A microstructure-based creep model for additively manufactured nickel-based superalloys[J]. Acta Materialia, 2022, 224:117528. [18] SONG Y, MA Y, PAN Z, et al. Nanoindentation characterization of creep-fatigue interaction on local creep behavior of P92 steel welded joint[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1):131. [19] XIAO B, YADAV S D, ZHAO L, et al. Deep insights on the creep behavior and mechanism of a novel G115 steel:Micromechanical modeling and experimental validation[J]. International Journal of Plasticity, 2021, 147:103124. [20] SAWADA K, KIMURA K, ABE F, et al. Catalog of NIMS creep data sheets[J]. Science and Technology of Advanced Materials, 2019, 20(1):1131-1149. [21] MERCKLING G. Introduction to ECCC and activities of the project advanced creep[J]. Materials at High Temperatures, 2004, 21(1):17-23. [22] TAMURA M, ABE F, SHIBA K, et al. Larson-Miller constant of heat-resistant steel[J]. Metallurgical and Materials Transactions A, 2013, 44(6):2645-2661. [23] PINK E. Physical significance and reliability of Larson-Miller and Manson-Haferd parameters[J]. Materials Science and Technology, 1994, 10(4):340-346. [24] HOLMSTRÖM S, AUERKARI P. Robust prediction of full creep curves from minimal data and time to rupture model[J]. Energy Materials, 2006, 1(4):249-255. [25] MARUYAMA K, ABE F, SATO H, et al. On the physical basis of a Larson-Miller constant of 20[J]. International Journal of Pressure Vessels and Piping, 2018, 159:93-100. [26] ABE F, TABUCHI M, HAYAKAWA M. Influence of data scattering on estimation of 100,000 hrs creep rupture strength of alloy 617 at 700℃ by Larson-Miller method[J]. Journal of Pressure Vessel Technology, 2017, 139(1):011403. [27] SAWADA K, KIMURA K, ABE F, et al. Data sheets on the elevated-temperature properties of 2.25Cr-1Mo-0.3V high strength chromium-molybdenum alloy steel forgings for pressure vessels under high-temperature service (JIS SFVCM F22V)[R]. NIMS Creep Data Sheet No. 53, 2007. [28] MANU C C, BIRK A M, KIM I Y. Uniaxial high-temperature creep property predictions made by CDM and MPC Omega techniques for ASME SA 455 steel[J]. Engineering Failure Analysis, 2009, 16(4):1303-1313. |