[1] 轩福贞,朱明亮,王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报, 2021, 57(6):26-51. XUAN Fuzhen, ZHU Mingliang, WANG Guobiao. Retrospect and prospect on century-long research of structural fatigue[J]. Journal of Mechanical Engineering, 2021, 57(6):26-51. [2] 王润梓,廖鼎,张显程,等. 高温结构蠕变疲劳寿命设计方法:从材料到结构[J]. 机械工程学报, 2021, 57(16):66-86. WANG Runzi, LIAO Ding, ZHANG Xiancheng, et al. Creep-fatigue life design methods in high-temperature structures:From materials to components[J]. Journal of Mechanical Engineering, 2021, 57(16):66-86. [3] LIU Xintian, WU Que, SU Shengchao, et al. Evaluation and prediction of material fatigue characteristics under impact loads:Review and prospects[J]. International Journal of Structural Integrity, 2022, 13(2):251-277. [4] LIU Xintian, LIU Jiazhi, WANG Haijie, et al. Prediction and evaluation of fatigue life considering material parameters distribution characteristic[J]. International Journal of Structural Integrity, 2022, 13(2):309-326. [5] DENG Qingyun, ZHU Shunpeng, HE Jinchao, et al. Multiaxial fatigue under variable amplitude loadings:Review and solutions[J]. International Journal of Structural Integrity, 2022, 13(3):349-393. [6] BENEDETTI M, FONTANARI V, SANTUS C, et al. Notch fatigue behaviour of shot peened high-strength aluminium alloys:Experiments and predictions using a critical distance method[J]. International Journal of Fatigue, 2010, 32(10):1600-1611. [7] LIAO Ding, ZHU Shunpeng, CORREIA J A F O, et al. Recent advances on notch effects in metal fatigue:A review[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(4):637-659. [8] ZHU Shunpeng, WU Yanlai, YI Xiaojian, et al. Probabilistic fatigue assessment of notched components under size effect using generalized weakest-link model[J]. International Journal of Fatigue, 2022, 162:107005. [9] ZHU Shunpeng, YE Wenlong, CORREIA J A F O, et al. Stress gradient effect in metal fatigue:Review and solutions[J]. Theoretical and Applied Fracture Mechanics, 2022, 121:103513. [10] ZHU Shunpeng, AI Yang, LIAO Ding, et al. Recent advances on size effect in metal fatigue under defects:A review[J]. International Journal of Fracture, 2021:1-23. [11] LI Xuekang, CHEN Sijia, ZHU Shunpeng, et al. Probabilistic fatigue life prediction of notched components using strain energy density approach[J]. Engineering Failure Analysis, 2021, 124:105375. [12] 宫建国,温建锋,轩福贞. 蠕变-疲劳载荷下高温结构的缺口效应研究进展[J]. 机械工程学报, 2015, 51(24):24-40. GONG Jianguo, WEN Jianfeng, XUAN Fuzhen. Research progress on notch effect of high temperature components under creep-fatigue loading[J]. Journal of Mechanical Engineering, 2015, 51(24):24-40. [13] 金丹,田大将,李江华,等. 缺口半径对疲劳寿命影响的 有限 元分 析[J]. 航空 动力 学报, 2015, 30(7):1618-1623. JIN Dan, TIAN Dajiang, LI Jianghua, et al. Finite element analysis for the effect of notched radius on fatigue life[J]. Journal of Aerospace Power, 2015, 30(7):1618-1623. [14] BRUDER T, STÖRZEL K, BAUMGARTNER J, et al. Evaluation of nominal and local stress based approaches for the fatigue assessment of seam welds[J]. International Journal of Fatigue, 2012, 34(1):86-102. [15] 钱桂安,王茂廷,王莲. 用局部应力应变法进行高周疲劳寿命预测的研究[J]. 机械强度, 2004, 26(S1):275-277. QIAN Guian, WANG Maoting, WANG Lian. High cycle fatigue life prediction by local stress-strain method[J]. Journal of Mechanical Strength, 2004, 26(S1):275-277. [16] 钟波,王延荣,魏大盛. 考虑应力梯度影响的多轴缺口疲劳寿命预测[J]. 航空动力学报, 2018, 33(11):2602-2610. ZHONG Bo, WANG Yanrong, WEI Dasheng. Multiaxial notch fatigue life prediction based on stress gradient effect[J]. Journal of Aerospace Power, 2018, 33(11):2602-2610. [17] NEUBER H. Theory of notch stresses:Principles for exact calculation of strength with reference to structural form and material[M]. USAEC Office of Technical Information, 1961. [18] HE Jinchao, ZHU Shunpeng, TADDESSE A T, et al. Evaluation of critical distance, highly stressed volume, and weakest-link methods in notch fatigue analysis[J]. International Journal of Fatigue, 2022, 162:106950. [19] PETERSON R. Notch sensitivity[J]. Metal Fatigue, 1959:293-306. [20] SUSMEL L. The theory of critical distances:A review of its applications in fatigue[J]. Engineering Fracture Mechanics, 2008, 75(7):1706-1724. [21] SUSMEL L, TAYLOR D. An elasto-plastic reformulation of the theory of critical distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime[J]. Journal of Engineering Materials and Technology, 2010, 132(2):021002. [22] LANNING D B, NICHOLAS T, HARITOS G K. On the use of critical distance theories for the prediction of the high cycle fatigue limit stress in notched Ti-6Al-4V[J]. International Journal of Fatigue, 2005, 27(1):45-57. [23] SUSMEL L, TAYLOR D. A novel formulation of the theory of critical distances to estimate lifetime of notched components in the medium-cycle fatigue regime[J]. Fatigue & Fracture of Engineering Materials & Structures, 2007, 30(7):567-581. [24] 刘香,王延荣,田爱梅,等. 考虑尺寸效应的缺口疲劳寿命预测方法[J]. 航空动力学报, 2017, 32(2):429-437. LIU Xiang, WANG Yanrong, TIAN Aimei, et al. A life prediction method for size effects on notched fatigue[J]. Journal of Aerospace Power, 2017, 32(2):429-437. [25] NIU Xiaopeng, ZHU Shunpeng, HE Jinchao, et al. Defect tolerant fatigue assessment of AM materials:Size effect and probabilistic prospects[J]. International Journal of Fatigue, 2022, 160:106884. [26] HE Jinchao, ZHU Shunpeng, NIU Xiaopeng, et al. Size effect in fatigue modelling of defective materials:Application of the calibrated weakest-link theory[J]. International Journal of Fatigue, 2022, 165:107213. [27] SAVAIDIS G, SAVAIDIS A, TSAMASPHYROS G, et al. On size and technological effects in fatigue analysis and prediction of engineering materials and components[J]. International Journal of Mechanical Sciences, 2002, 44(3):521-543. [28] MAKKONEN M. Notch size effects in the fatigue limit of steel[J]. International Journal of Fatigue, 2003, 25(1):17-26. [29] MOREL F, MOREL A, NADOT Y. Comparison between defects and micro-notches in multiaxial fatigue-The size effect and the gradient effect[J]. International Journal of Fatigue, 2009, 31(2):263-275. [30] WU Hao, LU Qiuying. Analysis on the behavior of nonpropagating fatigue cracks under steep stress gradients[J]. Advances in Materials Science and Engineering, 2014, 2014:1-7. [31] WANG Rongqiao, LIU Hui, HU Dianyin, et al. Evaluation of notch size effect on LCF life of TA19 specimens based on the stress gradient modified critical distance method[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(8):1794-1809. [32] FOUVRY S, GALLIEN H, BERTHEL B. From uni-to multi-axial fretting-fatigue crack nucleation:Development of a stress-gradient-dependent critical distance approach[J]. International Journal of Fatigue, 2014, 62:194-209. [33] SHEN Jiebin, FAN Haidong, ZHANG Guoqian, et al. Influence of the stress gradient at the notch on the critical distance and life prediction in HCF and VHCF[J]. International Journal of Fatigue, 2022, 162:107003. [34] TAYLOR D. Geometrical effects in fatigue:A unifying theoretical model[J]. International Journal of Fatigue, 1999, 21(5):413-420. [35] BELLETT D, TAYLOR D, MARCO S, et al. The fatigue behaviour of three-dimensional stress concentrations[J]. International Journal of Fatigue, 2005, 27(3):207-221. [36] HE Jinchao, ZHU Shunpeng, LIAO Ding, et al. Probabilistic fatigue assessment of notched components under size effect using critical distance theory[J]. Engineering Fracture Mechanics, 2020, 235:107150. [37] ZHU Shunpeng, HE Jinchao, LIAO Ding, et al. The effect of notch size on critical distance and fatigue life predictions[J]. Materials & Design, 2020, 196:109095. [38] WANG Rongqiao, LI Da, HU Dianyin, et al. A combined critical distance and highly-stressed-volume model to evaluate the statistical size effect of the stress concentrator on low cycle fatigue of TA19 plate[J]. International Journal of Fatigue, 2017, 95:8-17. [39] KIM J K, KIM D S, TAKEDA N. Notched strength and fracture criterion in fabric composite plates containing a circular hole[J]. Journal of Composite Materials, 1995, 29(7):982-998. [40] YANG Xiaoguang, WANG Jingke, LIU Jinlong. High temperature LCF life prediction of notched DS Ni-based superalloy using critical distance concept[J]. International Journal of Fatigue, 2011, 33(11):1470-1476. [41] 黄佳,杨晓光,石多奇,等. 基于临界距离-临界平面方法预测DZ125缺口低循环疲劳寿命[J]. 机械工程学报, 2013, 49(22):109-115. HUANG Jia, YANG Xiaoguang, SHI Duoqi, et al. Low cycle fatigue life prediction of notched DZ125 component based on combined critical distance-critical plane approach[J]. Journal of Mechanical Engineering, 2013, 49(22):109-115. [42] HU Xuteng, JIA Xu, BAO Zhenqiang, et al. Effect of notch geometry on the fatigue strength and critical distance of TC4 titanium alloy[J]. Journal of Mechanical Science and Technology, 2017, 31(10):4727-4737. [43] SUSMEL L, TAYLOR D. The theory of critical distances as an alternative experimental strategy for the determination of KIc and ΔKth[J]. Engineering Fracture Mechanics, 2010, 77(9):1492-1501. [44] CASTRO F C, ARAÚJO J A, ZOUAIN N. On the application of multiaxial high-cycle fatigue criteria using the theory of critical distances[J]. Engineering Fracture Mechanics, 2009, 76(4):512-524. [45] AMARGIER R, FOUVRY S, CHAMBON L, et al. Stress gradient effect on crack initiation in fretting using a multiaxial fatigue framework[J]. International Journal of Fatigue, 2010, 32(12):1904-1912. [46] LIAO Ding, ZHU Shunpeng, CORREIA J A F O, et al. Computational framework for multiaxial fatigue life prediction of compressor discs considering notch effects[J]. Engineering Fracture Mechanics, 2018, 202:423-435. [47] KONTERMANN C, ALMSTEDT H, SCHOLZ A, et al. Notch support for LCF-loading:A fracture mechanics approach[J]. Procedia Structural Integrity, 2016, 2:3125-3134. [48] MÄDE L, SCHMITZ S, GOTTSCHALK H, et al. Combined notch and size effect modeling in a local probabilistic approach for LCF[J]. Computational Materials Science, 2018, 142:377-388. [49] LIAO Ding, ZHU Shunpeng, KESHTEGAR B, et al. Probabilistic framework for fatigue life assessment of notched components under size effects[J]. International Journal of Mechanical Sciences, 2020, 181:105685. [50] 石亮,魏大盛,王延荣. 考虑应力梯度的轮盘疲劳寿命预测[J]. 航空动力学报, 2013, 28(6):1236-1242. SHI Liang, WEI Dasheng, WANG Yanrong. Fatigue life prediction of turbine disk based on stress gradient[J]. Journal of Aerospace Power, 2013, 28(6):1236-1242. [51] 赵丙峰,谢里阳,赵志强,等. 基于应力场强法的缺口构件场强值算法[J]. 机械工程学报, 2018, 54(24):88-97. ZHAO Bingfeng, XIE Liyang, ZHAO Zhiqiang, et al. Field stress intensity calculation of notched component specimens based on field intensity method[J]. Journal of Mechanical Engineering, 2018, 54(24):88-97. [52] ADIB-RAMEZANI H, JEONG J. Advanced volumetric method for fatigue life prediction using stress gradient effects at notch roots[J]. Computational Materials Science, 2007, 39(3):649-663. [53] 王延荣,李宏新,袁善虎,等. 考虑应力梯度的缺口疲劳寿命预测方法[J]. 航空动力学报, 2013, 28(6):1208-1214. WANG Yanrong, LI Hongxin, YUAN Shanhu, et al. Method for notched fatigue life prediction with stress gradient[J]. Journal of Aerospace Power, 2013, 28(6):1208-1214. [54] WEIBULL W. A statistical distribution function of wide applicability[J]. Journal of Applied Mechanics, 1951, 18(3):293-297. [55] AI Yang, ZHU Shunpeng, LIAO Ding, et al. Probabilistic modelling of notch fatigue and size effect of components using highly stressed volume approach[J]. International Journal of Fatigue, 2019, 127:110-119. [56] AI Yang, ZHU Shunpeng, LIAO Ding, et al. Probabilistic modeling of fatigue life distribution and size effect of components with random defects[J]. International Journal of Fatigue, 2019, 126:165-173. [57] 赵永翔,梁红琴. 基于两参数Weibull分布的概率疲劳S-N曲线模型[J]. 机械工程学报, 2015, 51(20):208-212. ZHAO Yongxiang, LIANG Hongqin. Modeling of the probabilistic fatigue S-N curves using the two parameter Weibull distribution[J]. Journal of Mechanical Engineering, 2015, 51(20):208-212. [58] ZHANG Keshi, JU J W, LI Zhenhuan, et al. Micromechanics based fatigue life prediction of a polycrystalline metal applying crystal plasticity[J]. Mechanics of Materials, 2015, 85:16-37. [59] MADERBACHER H, OBERWINKLER B, GÄNSER H P, et al. The influence of microstructure and operating temperature on the fatigue endurance of hot forged Inconel® 718 components[J]. Materials Science and Engineering:A, 2013, 585:123-131. [60] LI Xuekang, ZHU Shunpeng, LIAO Ding, et al. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory[J]. International Journal of Fatigue, 2022, 159:106788. [61] 吴楠,张显程,涂善东,等. 室温和650℃下晶粒尺寸对 GH4169合金疲劳小裂纹萌生和扩展行为的影响[J]. 机械工程学报, 2016, 52(20):66-75. WU Nan, ZHANG Xiancheng, TU Shantung, et al. Grain size effect on the initiation and propagation of small fatigue crack of GH4169 alloy at room temperature and 650℃[J]. Journal of Mechanical Engineering, 2016, 52(20):66-75. [62] DUQUESNAY D L, TOPPER T H, YU M T. The effect of notch radius on the fatigue notch factor and the propagation of short cracks[J]. Mechanical Engineering Publications, the Behaviour of Short Fatigue Cracks, 1986:323-335. [63] 姚亮亮. 镍基高温合金GH4169蠕变-疲劳交互作用试验研究[D]. 上海:华东理工大学, 2015. YAO Liangliang. Experimental study on creep-fatigue interaction behavior of GH4169[D]. Shanghai:East China University of Science and Technology, 2015. [64] 胡绪腾,辛朋朋,宋迎东. 基于最弱环理论的缺口件概率疲劳寿命预测方法[J]. 机械科学与技术, 2013, 32(2):164-169. HU Xuteng, XIN Pengpeng, SONG Yingdong. Probabilistic fatigue life prediction method for notched specimens based on the weakest-link theory[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(2):164-169. [65] 何金超. 尺寸效应下缺口结构强度分析与概率疲劳寿命预测[D]. 成都:电子科技大学, 2021. HE Jinchao. Probabilistic fatigue life prediction and strength analysis of notched components under size effect[D]. Chengdu:University of Electronic Science and Technology of China, 2021. [66] NIU Xiaopeng, WANG Runzi, LIAO Ding, et al. Probabilistic modeling of uncertainties in fatigue reliability analysis of turbine bladed disks[J]. International Journal of Fatigue, 2021, 142:105912. [67] TAYLOR D. The theory of critical distances[J]. Engineering Fracture Mechanics, 2008, 75(7):1696-1705. [68] EL HADDAD M H, TOPPER T H, SMITH K N. Prediction of non propagating cracks[J]. Engineering Fracture Mechanics, 1979, 11(3):573-584. |