[1] MOON S K, TAN Y E, JIHONG H, et al. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures[J]. International Journal of Precision Engineering and Manufacturing -Green Technology, 2014, 1(3):223-228. [2] XIONG Jian, MA Li, WU Linzhi, et al. Fabrication and crushing behavior of low density carbon fiber composite pyramidal truss structures[J]. Composite Structures, 2010, 92(11):2695-2702. [3] SHIDID D, LEARY M, CHOOG P, et al. Just-in-time design and additive manufacture of patient-specific medical implants[J]. Physics Procedia, 2016, 83:4-14. [4] ZHOU Hao, ZHANG Xiaoyu, ZENG Huizhong, et al. Lightweight structure of a phase-change thermal controller based on lattice cells manufactured by SLM[J]. Chinese Journal of Aeronautics, 2019, 32(7):1727-1732. [5] LIANG Hao, RAYMONT David, YAN Chunze, et al. Design and additive manufacturing of cellular lattice structures[C]//The International Conference on Advanced Research in Virtual and Rapid Prototyping (VRAP). Taylor & Francis Group, Leiria. 2011:249-254. [6] LIU Fei, ZHANG David, ZHANG Peng, et al. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting[J]. Materials, 2018, 11(3):374. [7] 郑聃, 李瑞迪, 宋波, 等. NiTi气雾化制粉工艺对选区激光熔化成型性、制件超弹性的影响[J]. 机械工程学报, 2020, 56(15):104-109. ZHENG Dan, LI Ruidi, SONG Bo, et al. Effect of NiTi powder gas atomization process on the selective laser melting moldability and alloys' superelastic[J]. Journal of Mechanical Engineering, 2020, 56(15):104-109. [8] SING S L, WIRIA F E, YEONG W Y. Selective laser melting of lattice structures:A statistical approach to manu-facturability and mechanical behavior[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49:170-180. [9] MAZUR M, LEARY M, SUN Shoujin, et al. Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8):1391-1411. [10] 邬冠华, 熊鸿建. 中国射线检测技术现状及研究进展[J]. 仪器仪表学报, 2016, 37(8):1683-1695. WU Guanhua, XIONG Hongjian. Radiography testing in China[J]. Chinese Journal of Scientific Instrument, 2016, 37(8):1683-1695. [11] 姬文苏, 丁玉奎. 火箭发动机多层粘接结构超声检测研究[J]. 兵工学报, 2015, 36(S1):364-368. JI Wensu, DING Yukui. Study of ultrasonic detection for multi-layer adhesive joints of solid propellant rocket engines[J]. Acta Armamentarii, 2015, 36(S1):364-368. [12] 郭健, 张丹, 马国义, 等. 无损检测(NDT)——磁粉检测(MT)技术[J]. 工程与试验, 2011, 51(3):55-58. GUO Jian, ZHANG Dan, MA Guoyi, et al. Nondestructive testing-magnetic particle testing technology[J]. Engineering & Test, 2011, 51(3):55-58. [13] 杨理践, 耿浩, 高松巍. 长输油气管道漏磁内检测技术[J]. 仪器仪表学报, 2016, 37(8):1736-1746. YANG Lijian, GENG Hao, GAO Songwei. Magnetic flux leakage internal detection technology of the long distance oil pipeline[J]. Chinese Journal of Scientific Instrument, 2016, 37(8):1736-1746. [14] GARCIA-MARTIN J, GOMEZ-GIL J, VAZQEZ-SANCHEZ E. Non-destructive techniques based on eddy current testing[J]. Sensors, 2011, 11(3):2525. [15] KRAUSS H, ZEUGNER T, ZAEH M F. Layerwise monitoring of the selective laser melting process by thermography[J]. Physics Procedia, 2014, 56:64-71. [16] NOURI H, GUEDDASMA S, BELHABIB S. Structural im-perfections in additive manufacturing perceived from the X-ray micro-tomography perspective[J]. Journal of Materials Processing Technology, 2016, 234:113-124. [17] SANDE K, UIJLINGS J, GEVERS T, et al. Segmentation as selective search for object recognition[C]//International Conference on Computer Vision. Barcelona, Spain:IEEE Computer Society, 2011:1879-1886. [18] SERMANET P, EIGEN D, ZHANG Xiang, et al. Overfeat:Integrated recognition, localization and detection using convolutional networks[C]//2nd International Conference on Learning Representations, ICLR 2014. Banff, Canada, Université de Montreal, 2014. [19] REN Shaoqing, HE Kaiming, GIRSHICK Ross, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 39(6):1137-1149. [20] CAI Zhaowei, FAN Quanfu, FERIS R, et al. A unified multi-scale deep convolutional neural network for fast object detection[J]. Lecture Notes in Computer Science, 2016, 354-370. [21] JOSEPH R, ALI F. Yolov3:An incremental improvement[EB/OL]. arXiv preprint[2020-2-25]. https://doi.org/10.48550/arXiv.1804.02767. [22] 田珠, 桂志国, 张鹏程, 等. Faster_RCNN用于工业火花塞图像焊缝缺陷检测[J]. 测试技术学报, 2020, 34(1):34-40. TIAN Zhu, GUI Zhiguo, ZHANG Pengcheng, et al. Faster_RCNN for industrial spark plug image weld defect inspection[J]. Journal of Test and Measurement Technology, 2020, 34(1):34-40. [23] 梁杰, 李磊, 任君, 等. 基于深度学习的红外图像遮挡干扰检测方法[J]. 兵工学报, 2019, 40(7):1401-1410. LIANG Jie, LI Lei, REN Jun, et al. Infrared image occlusion interference detection method based on deep learning[J]. Acta Armamentarii, 2019, 40(7):1401-1410. [24] XIE Lele, AHMAD T, JIN Lianwen, et al. A new CNN-based method for multi-directional car license plate detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2):507-517. [25] 张玉燕, 李永保, 温银堂, 等. 基于Faster R-卷积神经网络的金属点阵结构缺陷识别方法[J]. 兵工学报, 2019, 40(11):2329-2335. ZHANG Yuyan, LI Yongbao, WEN Yintang, et al. Internal defect detection of metal three-dimensional multi-layer lattice structure based on Faster R-CNN[J]. Acta Armamentarii, 2019, 40(11):2329-2335. [26] ZOU Zhengxia, SHI Zhenwei, GUO Yuhong, et al. Object detection in 20 years:A survey[EB/OL]. arX-iv preprint[2019-05-16] https://doi.org/10.48550/arXiv.1905.05055. [27] DONG Chao, LOY Chenchang, HE Kaiming, et al. Learning a deep convolutional network for image super-resolution[C]//European conference on computer vision. Springer, Cham, 2014:184-199. |