机械工程学报 ›› 2022, Vol. 58 ›› Issue (20): 3-26.doi: 10.3901/JME.2022.20.003
陈仲生1, 曹军义2, 秦朝烨3, 陈志文4, XIONG Yeping5
收稿日期:
2022-03-03
修回日期:
2022-08-01
出版日期:
2022-10-20
发布日期:
2022-12-27
通讯作者:
陈仲生(通信作者),男,1977年出生,博士,特聘教授,硕士研究生导师。主要研究方向为振动能量收集、状态监控与故障诊断等。E-mail:chenzs@czu.cn
作者简介:
曹军义,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为振动能量俘获的智能结构与非线性动力学、智能柔性机构与仿生机器人的精密驱动与控制等。E-mail:caojy@mail.xjtu.edu.cn;秦朝烨,男,1980年出生,博士,副教授,博士研究生导师。主要研究方向为振动分析与控制、旋转机械动力学与故障诊断、航天器动力学与缓冲设计、振动能量俘获等。E-mail:qinzy@tsinghua.edu.cn;陈志文,男,1998年出生,硕士研究生。主要研究方向为非线性电磁式振动能量收集。E-mail:932024625@qq.com;XIONG Yeping,女,1959年出生,博士,副教授,博士研究生导师。主要研究方向为非线性振动分析、流固耦合分析、振动能量收集等。E-mail:Y.Xiong@soton.ac.uk
基金资助:
CHEN Zhongsheng1, CAO Junyi2, QIN Zhaoye3, CHEN Zhiwen4, XIONG Yeping5
Received:
2022-03-03
Revised:
2022-08-01
Online:
2022-10-20
Published:
2022-12-27
摘要: 悬架是汽车中的核心关键部件,具有承载和减振的双重功能。传统的悬架系统采用黏性液体或干摩擦阻尼器将振动能量转化为热量耗散出去实现减振,造成能量浪费,这尤其对新能源汽车不利。近十年来,既能抑制振动又能收集电能的新型悬架系统受到了高度关注和广泛研究。为了全面掌握汽车悬架同步振动抑制与能量收集技术领域的最新进展,回顾汽车悬架的发展历程,总结汽车悬架从路面激励中可收集的振动能量,重点梳理汽车能量回收悬架技术研究现状,探讨当前面临的技术挑战并对未来发展方向进行了展望。该研究有助于国内同行快速准确地掌握本领域的技术现状,有望为国内新型汽车悬架技术的发展提供重要参考。
中图分类号:
陈仲生, 曹军义, 秦朝烨, 陈志文, XIONG Yeping. 汽车悬架同步振动抑制与能量收集综述与展望[J]. 机械工程学报, 2022, 58(20): 3-26.
CHEN Zhongsheng, CAO Junyi, QIN Zhaoye, CHEN Zhiwen, XIONG Yeping. Simultaneous Vibration Suppression and Energy Harvesting of Vehicle Suspension Systems: Status and Prospects[J]. Journal of Mechanical Engineering, 2022, 58(20): 3-26.
[1] ISO8608. Mechanical vibration-road surface profiles- reporting of measured data[S]. Geneva:International Organization for Standardization,1995. [2] ZHANG P S. Design of electromagnetic shock absorbers for energy harvesting from vehicle suspensions[D]. New York:Stony Brook University,2010. [3] LAFARGE B,CAGIN S,CUREA O,et al. From functional analysis to energy harvesting system design:Application to car suspension[J]. International Journal on Interactive Design and Manufacturing,2016,10(1): 37-50. [4] 张勇超,郑雪春,喻凡,等. 馈能式电动悬架的原理与试验研究[J]. 汽车工程,2008,30(l):48-52. ZHANG Yongchao,ZHENG Xuechun,YU Fan,et al. Theoretical and experimental study on electrical energy- regenerative suspension[J]. Automotive Engineering,2008,30(l):48-52. [5] 郜浩楠,徐俊,蒲晓晖,等. 面向新能源汽车的悬架振动能量回收在线控制方法[J]. 西安交通大学学报,2020,54(4):19-26. GAO Haonan,XU Jun,PU Xiaohui,et al. An online control method for energy recovery of suspension vibration of new energy vehicles[J]. Journal of Xi’an Jiaotong University,2020,54(4):19-26. [6] 周创辉,文桂林. 基于改进型天棚阻尼控制算法的馈能式半主动油气悬架系统[J]. 振动与冲击,2018,37(14):168-174. ZHOU Chuanghui,WEN Guilin. Hydraulic-electrical energy regenerative semi-active hydro-pneumatic suspension system based on a modified skyhook damping control algorithm[J]. Journal of Vibration and Shock,2018,37(14):168-174. [7] Lü X Y,JI Y J,ZHAO H Y,et al. Research review of a vehicle energy-regenerative suspension system[J]. Energies,2020,13:441 [8] ABDELKAREEM M A A,XU L,ALI M K A,et al. Vibration energy harvesting in automotive suspension system:A detailed review[J]. Applied Energy,2018,229: 672-699. [9] 陈士安,何仁,陆森林. 新型馈能型悬架及其工作原理[J]. 机械工程学报,2007,43(11):177-182. CHEN Shian,HE Ren,LU Senlin. New reclaiming energy suspension and its working principle[J]. Chinese Journal of Mechanical Engineering,2007,43(11):177-182. [10] YU W,WANG R C,ZHOU R Z. A comparative research on the energy recovery potential of different vehicle energy regeneration technologies[J]. Energy Procedia,2019,158:2543-2548. [11] ZHENG P,WANG R C,GAO J W. A comprehensive review on regenerative shock absorber systems[J]. Journal of Vibration Engineering & Technologies,2020,8:225-246. [12] ZHANG R,WANG X,JOHN S. A comprehensive review of the techniques on regenerative shock absorber systems[J]. Energies,2018,11:1167. [13] 如何区分独立悬架和非独立悬架?[EB/OL]. [2021-11-04]. https://www.sohu.com/a/499144866_120012578. How to distinguish independent suspension and non-independent suspension? [EB/OL]. [2021-11-04]. https://www.sohu.com/a/499144866_120012578. [14] OLLEY M. Independent wheel suspension–its whys and wherefores[J]. Society of Automotive Engineers Journal,1934,34(4):73-81. [15] FEDERSPIEL-LABROSSE J M. Contribution of l’Etude et au Perfectionement de la Suspension des Vehicules[J]. J. de la SIA,FISITA,1954(1):427-436. FEDERSPIEL-LABROSSE J M. Contribution of the study and perfection of the suspension of vehicles[J]. Journal of the SIA,FISITA,1954(1):427-436. [16] CROSBY M,KARNOPP D. The active damper-A new concept in shock and vibration control[J]. Shock and Vibration Bulletin,1973,43:119-133. [17] PAN H H. Nonlinear control for vehicle active suspension systems [D]. Hong Kong,China:Hong Kong Polytechnic University,2018. [18] EMANUELE G,TUDOR S,CHARLES W S,et al. Semi-active suspension control-improved vehicle ride and road friendliness[M]. London:Springer-Verlag,2008. [19] HERMAN A H,SCHALK E. A comparison of quarter,half and full vehicle models with experimental ride comfort data[C/CD]//Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference,2015,DETC2015-47180. [20] VAISHNAV A,SARVAIYA M,DHABALIYA P,et al. Mathematical modelling and comparison of two degree of freedom suspension system of quarter car[J]. Imperial Journal of Interdisciplinary Research,2016,2(11):128-137. [21] MANTARAS D A,LUQUE P. Ride comfort performance of different active suspension systems[J]. International Journal of Vehicle Design,2006,40(1-3):106-125. [22] SHELKE G D,MITRA A C,VARUDE V R. Validation of simulation and analytical model of nonlinear passive vehicle suspension system for quarter car[J]. Materials Today-Proceedings,2018,5(9):19294-19302. [23] NAIK R D,SINGRU P M. Stability of a nonlinear quarter-car system with multiple time-delays[J]. International Journal of Acoustics and Vibration,2015,20 (2):90-94. [24] IHSAN S I,AHMADIAN M,FARIS W F,et al. Ride performance analysis of half-car model for semi-active system using RMS as performance criteria[J]. Shock and Vibration,2009,16:593-605. [25] BHAVE S Y,RAZDAN S. Optimization of air suspension system considering a half car model[C]//Proceedings of 6th International Conference on Vibration Engineering and Technology of Machinery,2010:780-789. [26] GANDHI P,ADARSH S,RAMACHANDRANB K I. Performance analysis of half car suspension model with 4 DOF using PID,LQR,FUZZY and ANFIS controllers[J]. Procedia Computer Science,2017,115:2-13. [27] SARDER M M,HOSSEIN M Z,CHOWDHURY H A,et al. Investigation of vibration on vehicle suspension system using half-car-model[J]. Advanced Materials Research,2011,199-200:831-834. [28] YANG Z Y,LIANG S,SUN Y S,et al. Vibration suppression of four degree-of-freedom nonlinear vehicle suspension model excited by the consecutive speed humps[J]. Journal of Vibration and Control,2016,22(6): 1560-1567. [29] GUO L X,ZHANG L P. Vehicle vibration analysis in changeable speeds[J]. Mathematical Problems in Engineering,2010:802720,DOI:10.1155/2010/802720. [30] KIRLI A. Design and application of an active suspension system on a 6 DOF half vehicle model[C/CD]//Proceedings of the XXV International Conference on Information,Communication and Automation Technologies,2015. [31] KUMAR H,SHAMANTH V,GANGADHARAN K,et al. Study the dynamic behaviour of seven DOF of full car model with semi-active suspension system[J]. International Journal of Vehicle Performance,2021,7(1-2):21-40. [32] MONTAZERI-GH M,AZAD M K. Simulation of intelligent fuzzy-based active suspension system[C/CD] //Proceedings of the 13th European Simulation Symposium on Simulation in industry,2001. [33] KUMAR S,MEDHAVI A,KUMAR R. Modeling of an active suspension system with different suspension parameters for full vehicle[J]. Indian Journal of Engineering & Materials Sciences,2021,28(2):55-63. [34] RIZVI S M H,ABID M,KHAN A Q,et al. H∞Control of 8 degrees of freedom vehicle active suspension system[J]. Journal of King Saud University-Engineering Sciences,2018,30(2):161-169. [35] SMITH W A,ZHANG N,HU W. Hydraulically interconnected vehicle suspension:Handling performance[J]. Vehicle System Dynamics,2011,49(1-2):87-106. [36] MORADI A,M NAFCHI A,GHANBARZADEH A,et al. Optimization of linear and nonlinear full vehicle model for improving ride comfort vs. road holding with the Bees Algorithm[C/CD]//Proceedings of IEEE Colloquium on Humanities,Science and Engineering,2011. [37] HUANG B. An energy-regenerative vehicle suspension system- development,optimization,and improvement[D]. Hong Kong,China:Hong Kong University of Science and Technology,2016 [38] GUO S J,LIU YL,XU L,et al. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles[J]. Vehicle System Dynamics,2016,54(7):1-25. [39] ELMADANY M M,EL-TAMIMI A. On a subclass of nonlinear passive and semi-active damping for vibration isolation[J]. Computers & Structures,1990,36:921-931. [40] KALYAN RAJ A H,ANAND S,DHANUSHKODI D M. Engineering a passive non-linear automobile suspension [C]//Proceedings of International Conference on Computer Aided Engineering,2007:1-16. [41] KALYAN RAJ,C PADMANABHAN A H. A new passive non-linear damper for automobiles[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2009,223:1435. [42] AJIT G M,ANIRBAN C M. Development of linear and non-linear vehicle suspension model[J]. Materials Today:Proceedings,2018,5:4317-4326. [43] MITRAA A C,DESAIB G J,PATWARDHANC S R,et al. Optimization of passive vehicle suspension system by genetic algorithm[J]. Procedia Engineering,2016,144: 1158-1166. [44] SHIRAHATTI A,PRASAD P S S,PRAVIN P,et al. Optimal design of passenger car suspension for ride and road holding[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2008,30(1): 66-76. [45] GUNDOGDU O. Optimal seat and suspension design for a quarter car with driver model using genetic algorithms[J]. International Journal of Industrial Ergonomics,2007,37:327-332. [46] GADHVIA B,SAVSANI V,PATEL V. Multi-objective optimization of vehicle passive suspension system using NSGA-II,SPEA2 and PESA-II[J]. Procedia Technology,2016,23:361-368. [47] DEB K,PRATAP A,AGARWAL S,et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation,2002,6:182-197. [48] ZITZLER E,LAUMANNS M,THIELE L. SPEA2:improving the strength Pareto evolutionary algorithm for multiobjective optimization[C]//Proceedings of the EUROGEN'2001,2001:95-100. [49] CORNE D W,JERRAM N R,KNOWLES J D,et al. PESA-II:Region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference,2001:1-8. [50] KUO Y P,PAI N S. Design of nonlinear passive suspension system using an evolutionary programming[J]. Journal of Physics:Conference Series,2008,96:012092. [51] ISSA M,SAMN A. Passive vehicle suspension system optimization using Harris Hawk Optimization algorithm[J]. Mathematics and Computers in Simulation,2022,191:328-345. [52] CHEN D N,ZHANG R X,YAO C Y,ZHAO Z Y. Dynamic topology multi force particle swarm optimization algorithm and its application[J]. Chinese Journal of Mechanical Engineering,2016,29(1):124-135. [53] 陈无畏,王启瑞,朱婉玲. 基于遗传算法和H∞控制的悬架系统集成设计[J]. 振动工程学报,2003,16(2):143-148. CHEN Wuwei,WANG Qirui,ZHU Wanling. Integrated structure-control design for a suspension system based on genetic algorithm and H∞control[J]. Journal of Vibration Engineering,2003,16(2):143-148. [54] 程美英,倪志伟,朱旭辉. 萤火虫优化算法理论研究综述[J]. 计算机科学,2015,42(4):19-24. CHENG Meiying,NI Zhiwei,ZHU Xuhui. Overview on glowworm swarm or firefly algorithm[J]. Computer Science,2015,42(4):19-24. [55] SAVARESI S M,POUSSOT-VASSAL C,SPELTA C,et al. Semi-active suspension control design for vehicles[M]. Oxford:Butterworth-Heinemann,2010. [56] CODECA F,SAVARESI S M,SPELTA C,et al. Identification of an electro-hydraulic controllable shock absorber using black-block non-linear models[C/CD] //Proceedings of IEEE International Conference on Control Applications,2008. [57] YAO G Z,YAP F F,CHEN G,et al. MR damper and its application for semi-active control of vehicle suspension system[J]. Mechatronics,2002,12(7):963-973. [58] YU M,LIAO C R,CHEN W M,et al. Study on MR semi-active suspension system and its road testing[J]. Journal of Intelligent Material Systems and Structures,2006,17(8-9):801-806. [59] YANG J,NING D,SUN,et al. A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component[J]. Mechanical Systems and Signal Processing,2021,147:107071. [60] JUAN C T M,DIANA H A,LUIS A B,et al. Magneto-rheological dampers-model influence on the semi-active suspension performance[J]. Smart Materials and Structures,2019,28(10):28 105030. [61] OH J S,JEON K G,KIM G W,et al. Dynamic analysis of semi-active MR suspension system considering response time and damping force curve[J]. Journal of Intelligent Material Systems and Structures,2021,32(13):1462-1472. [62] TRIKANDE M W,RAJAMOHAN V. MR damper characterization for implementation of semi-active suspension control[J]. Indian Journal of Science and Technology,2016,9(30):1-11. [63] SALUNKHE H P,SADALE S B,THIKANE S. Mathematical modeling of electrorheological damper in semi-active suspension[J]. Mathematical Sciences International Research Journal,2018,7(5):67-74. [64] PETEK N K,ROMSTADT D J,LIZELL M B,et al. Demonstration of an automotive semi-active suspension using electrorheological fluid[J]. SAE Transactions on Journal of Passenger Cars,1995,104:987-992. [65] WU X M,WONG J,STURK M,et al. Simulation and experimental study of a semi-active suspension with an electrorheological damper[J]. International Journal of Modern Physics B,1994,8(20):2987-3003. [66] SUH M S,YEO M S. Development of semi-active suspension systems using ER fluids for the wheeled vehicle[J]. Journal of Intelligent Material Systems and Structures,1999,10(9):743-747. [67] ZHAO X,ZHANG Y X. Electrorheological damper and its application for semi active suspension system[J]. Journal of Beijing Institute of Technology,2007,16(1): 9-12. [68] WONG J Y,WU X M,STURK M,et al. On the applications of electro-rheological fluids to the development of semi-active suspension systems for ground vehicles[J]. Transactions of the Canadian Society for Mechanical Engineering,1993,17(4B):789-800. [69] EMURA J,KAKIZAKI S,YAMAOKA F,et al. Development on the semi-active suspension system based on the sky-hook damper theory[J]. SAE Transactions on Journal of Passenger Cars,1994,103(6):1110-1119. [70] KARNOPP D,CROSBY M J,HARWOOD R A. Vibration control using semi-active force generators[J]. Journal of Engineering for Industry,1974,96(2):619-626. [71] SAMMIER D,SENAME O,DUGARD L. Skyhook and control of active vehicle suspensions:Some practical aspects[J]. Vehicle System Dynamics,2003,39(4):279-308. [72] SAVARESI S M,SILANI E,BITTANTI S. Acceleration-driven-damper (ADD):An optimal control algorithm for comfort-oriented semiactive suspensions[J]. Journal of Dynamic Systems Measurement and Control,2005,127(2):218-229. [73] SAVARESI S M,SPELTA C. Mixed sky-hook and ADD:Approaching the filtering limits of a semi-active suspension[J]. Journal of Dynamic Systems Measurement and Control,2007,129(4):382-392. [74] SAVARESI S M,SPELTA C. A single-sensor control strategy for semi-active suspensions[J]. IEEE Transactions on Control Systems Technology,2009,17(1):143-152. [75] KOO J. Using magneto-rheological dampers in semiactive tuned vibration absorbers to control structural vibrations[D]. Virginia:Virginia Polytechnic Institute and State University,2003. [76] KOO J,AHMADIAN H,SETAREH M,et al. In search of suitable control methods for semi-active tuned vibration absorbers[J]. Journal of Vibration and Control,2004,10(2):163-174. [77] DÍAZ-CHOQUE C S,FÉLIX-HERRÁN L C,RAMÍREZ-MENDOZA R A. Optimal skyhook and groundhook control for semiactive suspension:A comprehensive methodology[J/OL]. Shock and Vibration,2021:8084343. https://doi.org/10.1155/2021/8084343. [78] AHMADIAN M. A hybrid semiactive control for secondary suspension applications[C/CD]//Proceedings of the 6th ASME Symposium on Advanced Automotive Technologies,1997,IMECE1997-0464. [79] AHMADIAN M,VAHDATI N. Transient dynamics of semiactive suspensions with hybrid control[J]. Journal of Intelligent Material Systems and Structures,2006,17(2):145-153. [80] DYKE S J. Acceleration feedback control strategies for active and semi-active systems:Modelling,algorithm development and experimental verification[D]. South Bend:University of Notre Dame,1996. [81] BREZAS P,SMITH M C,HOULTB W. A clipped-optimal control algorithm for semi-active vehicle suspensions:Theory and experimental evaluation[J]. Automatica,2015,53(3):188-194. [82] DU H,SZE K,LAM J. Semi-active H∞ control with magneto-rheological dampers[J]. Journal of Sound and Vibration,2005,283(3-5): 981-996. [83] ANTON G,ALEXANDER S. Neural network controller for semi-active suspension systems with road preview[D]. Gothenburg:Chalmers University of Technology,2019. [84] GIORGETTI N,BEMPORAD A,TSENG H,et al. Hybrid model predictive control application toward optimal semi-active suspension[J]. International Journal of Control,2006,79(5):521-533. [85] JONASSO M,ROOSC F. Design and evaluation of an active electromechanical wheel suspension system[J]. Mechatronics,2008,18(4):218-230. [86] GAY F,COUDERT N,RIFQI I,et al. Development of hydraulic active suspension with feedforward and feedback design[J]. SAE Transactions on Journal of Passenger Cars,2000,109(6):115-122. [87] GRAF C,KIENEKE R,MAAS J. Pneumatic push-pull actuator for an active suspension[J]. IFAC Proceedings Volumes,2010,43(18):606-613. [88] GYSEN B L J,JANSSEN J L G,PAULIDES J J T,et al. Design aspects of an active electromagn eticsuspension system for automotive applications[J]. IEEE Transactions on Industry Applications,2009,45(5):1589-1597. [89] RIDUAN A F M,TAMALDIN N,SUDRAJAT A,et al. Review on active suspension system[J]. SHS Web of Conferences,2018,49:02008. [90] HROVAT D. Applications of optimal control to advanced automotive suspension design[J]. Journal of Dynamic Systems,Measurement,and Control,1993,115(2B):328-342. [91] ULSOY A G,HROVAT D,TSENG T. Stability robustness of LQ and LQG active suspensions[J]. Dynamic Systems,Measurement,and Control,1994,116(1):123-131. [92] YAMASHITA M,FUJIMORI K,HAYAKAWA K,et al. Application of H∞control to active suspension systems[J]. Automatica,1994,30(11):1717-1729. [93] KIM C,RO P I. A sliding mode controller for vehicle active suspension systems with non-linearities[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,1998,212(2):79-92. [94] HUANG Y B,NA J N,WU X,et al. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance[J]. ISA Transactions,2015,54:145-155. [95] YAGIZ N,HACIOGLU Y. Backstepping control of a vehicle with active suspensions[J]. Control Engineering Practice,2008,16(12):1457-1467. [96] KLOCKIEWICZ Z,SLASKI G. The method of estimating kinematic road excitation with use of real suspension responses and model[J]. Vibrations in Physical Systems,2019,30:2019214. [97] ABID H J,CHEN J,NASSAR A A. Equivalent air spring suspension model for quarter-passive model of passenger vehicles[J]. International Scholarly Research Notices,2015:974020. [98] MITRA A C,RAJPUT A,SATISHV,et al. Development and analysis of passive suspension model with half sine wave road bump for different suspension parameters[J]. AIP Conference Proceedings,2022,2469:020023. [99] MELCER J. Numerical simulation of random profile of the road surface[J]. AIP Conference Proceedings,2020,2293:130004. [100] ZUO L,ZHANG P S. Energy harvesting ride comfort and road handling of regenerative vehicle suspensions[J]. Journal of Vibration and Acoustics,2013,135(1):1-8. [101] PETER M. Energy harvesting potential of automobile suspension[J]. Vehicle System Dynamics,2016,54(12): 1651-1670. [102] ZHANG Y X,GUO K H,WANG D,et al. Energy conversion mechanism and regenerative potential of vehicle suspensions[J]. Energy,2017,119:961-970. [103] KHOSHNOUD F,ZHANG Y,SHIMURA R,et al. Energy regeneration from suspension dynamic modes and self-powered actuation[J]. IEEE/ASME Transactions on Mechatronics,2015,20(5):2513-2524. [104] SULTONI A I,SUTANTRA I N,PRAMONO A S. Modeling,prototyping and testing of regenerative electromagnetic shock absorber[J]. Applied Mechanics and Materials,2014,493:395-400. [105] WEI C,TAGHAVIFAR H. A novel approach to energy harvesting from vehicle suspension system:Half vehicle model[J]. Energy,2017,134:279-288. [106] LAFARGE B,CAGIN S,CUREA O,et al. From functional analysis to energy harvesting system design:Application to car suspension[J]. International Journal on Interactive Design and Manufacturing,2016,10(1):37-50. [107] ABDELKAREEM M A A,XU L,GUO X,et al. Energy harvesting sensitivity analysis and assessment of the potential power and full car dynamics for different road modes[J]. Mechanical Systems and Signal Processing,2018,110:307-332. [108] KHOSHNOUD F,ZHANG Y,SHIMURA R,et al. Energy regeneration from suspension dynamic modes and self-powered actuation[J]. IEEE/ASME Trans Mechatronics,2015,20(5):2513-2524. [109] HUANG B,HSIEH C Y,GOLNARAGHI F,et al. Development and optimization of an energy regenerative suspension system under stochastic road excitation[J]. Journal of Sound and Vibration,2015,357:16-34. [110] WANG R,GU F,CATTLEY R,et al. Modelling,testing and analysis of a regenerative hydraulic shock absorber system[J]. Energies,2016,9(5):386-410. [111] LI Z J,ZUO L,LUHRS G,et al. Electromagnetic energy-harvesting shock absorbers:Design,modeling,and road tests[J]. IEEE Transactions on Vehicular Technology,2013,62(3):1065-1074. [112] GILL C,KNIGHT C,MCGARRY S. Measured power dissipation of shock absorbers on light and heavy commercial vehicles[J]. SAE International Journal of Commercial Vehicles,2014,7(2):718-725. [113] MOHAMED A A A,XU L,ALI M K A,et al. Vibration energy harvesting in automotive suspension system:A detailed review[J]. Applied Energy,2018,229:672-699. [114] ALJADIRI R T,TAHA L Y,IVEY P. Electrostatic energy harvesting systems:A better understanding of their sustainability[J]. Journal of Clean Energy Technologies,2017,5(5):409-416. [115] LIANG H T,HAO G B,OLSZEWSKIA O Z. A review on vibration-based piezoelectric energy harvesting from the aspect of compliant mechanisms[J]. Sensors and Actuators A:Physical,2021,331:112743. [116] WANG Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano,2013,7(11): 9533-9557. [117] IBRAHIM P,ARAFA M,ANIS Y. An electromagnetic vibration energy harvester with a tunable mass moment of inertia[J]. Sensors,2021,21:5611. [118] NAITO Y,UENISHI K. Electrostatic MEMS vibration energy harvesters inside of tire treads[J]. Sensors,2019,19(4):890. [119] XIAO H,WANG X,JOHN S. A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester[J]. Mechanical Systems and Signal Processing,2015,58:355-375. [120] LEE H,JANG H,PARK J,et al. Design of a piezoelectric energy-harvesting shock absorber system for a vehicle[J]. Integrated Ferroelectrics,2013,141(1):32-44. [121] XIE X,WANG Q. Energy harvesting from a vehicle suspension system[J]. Energy,2015,86:385-392. [122] BENHIBA A,BYBI A,ALLA R,et al. Investigation of vibrations energy harvesting from passive car suspension using quarter car model under bump excitation[C/CD] // Proceedings of International Conference on Energy and Green Computing,2022:00053. [123] CABAN J,LITAK G,AMBROŻKIEWICZ B,et al. Possibilities of energy harvesting from the suspension system of the internal combustion engine in a vehicle[J]. Communications,2021,23(2):106-116. [124] FAN F R,TIAN Z Q,WANG Z L. Flexible triboelectric generator[J]. Nano Energy,2012,1:328-334. [125] RATHORE S,HARMAS S,SWAIN B P,et al. A critical review on triboelectric nanogenerator[J]. IOP Conference Series:Materials Science and Engineering,2018,377:012186. [126] ASKARI H,HASHEMI E,KHAJEPOUR A,et al. Towards self-powered sensing using nanogenerators for automotive systems[J]. Nano Energy,2018,53:1003-1019. [127] KANG M,KIM T Y,SEUNG W,et al. Cylindrical free-standing mode triboelectric generator for suspension system in vehicle[J]. Micromachines,2019,10(1):17. [128] HU Y Q,WANG X L,QIN Y C,et al. A robust hybrid generator for harvesting vehicle suspension vibration energy from random road excitation[J]. Applied Energy,2022,309:118506. [129] SUDA Y,SHIIBA T,HIO K,et al. Study on electromagnetic damper for automobiles with nonlinear damping force characteristics:road test and theoretical analysis[J]. Vehicle System Dynamics,2004,41:637-646. [130] GUPTA A,JENDRZEJCZYK J A,MULCAHY T M,et al. Design of electromagnetic shock absorbers[J]. International Journal of Mechanics and Materials in Design,2006,3:285-291. [131] ZUO L,SCULLY B,SHESTANI J,et al. Design and characterization of an electromagnetic energy harvester for vehicle suspensions[J]. Smart Materials and Structures,2010,19:045003. [132] EBRAHIMI B,BOLANDHEMMAT H,KHAMESEE M B,et al. A hybrid electromagnetic shock absorber for active vehicle suspension systems[J]. Vehicle System Dynamics,2011,49:311-332. [133] CHEN C,LIAO W H. A self-powered,self-sensing magnetorheological damper[C/CD]//Proceedings of IEEE International Conference on Mechatronics and Automation,2010. [134] HALBACH K. Permanent magnets for production and use of high energy particle beams[C/CD]//Proceedings of the 8th International Workshop on Rare Earth Magnets and Their Applications,1985:16085755. [135] ZHU D,BEEBY S,TUDOR J,et al. Vibration energy harvesting using the halbach array[J]. Smart Materials and Structures,2012,21:075020. [136] ZHU D,BEEBY S,TUDOR J,et al. Increasing output power of electromagnetic vibration energy harvesters using improved halbach arrays[J]. Sensors and Actuators A:Physical,2013,203:11-19. [137] LONG Z,HE G,XUE S. Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array[J]. IEEE Transactions on Magnetics,2011,47:4717-4724. [138] KIM M H,KIM H Y,KIM H C,et al. Design and control of a 6-DOF active vibration isolation system using a halbach magnet array[J]. IEEE/ASME Transactions on Mechatronics,2016,21(4):2185-2196. [139] PRZYBYLSKI M,SUN S S,LI W H. Development and characterization of a multi-layer magnetorheological elastomer isolator based on a Halbach array[J]. Smart Materials and Structures,2016,25(10):105015. [140] ZHANG P S. Design of electromagnetic shock absorbers for energy harvesting from vehicle suspensions[D].New York:Stony Brook University,2010. [141] DUONG M T,CHUN Y D,HONG D K. Design of a high-performance 16-slot 8-pole electromagnetic shock absorber using a novel permanent magnet structure[J]. Energies,2018,11(12):3352. [142] TANG X,LIN T,ZUO L. Design and optimization of a tubular linear electromagnetic vibration energy harvester[J]. IEEE/ASME Transactions on Mechatronics,2014,19:615-622. [143] AOYAMA Y,KAWABATE K,HASEGAWA S,et al. Development of the full active suspension by Nissan[R]. SAE,901747,1990. [144] AVADHANY S N. Analysis of hydraulic power transduction in regenerative rotary shock absorbers as function of working fluid kinematic viscosity[D]. Cambridge:Massachusetts Institute of Technology,2009. [145] WENDEL G R,STECKLEIN G L. A regenerative active suspension system[R]. SAE Technical Paper 910659,1991. [146] FANG Z,GUO X,XU L,ZHANG H. Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber[J]. Advances in Mechanical Engineering,2013,5:943528. [147] WANG R,GU F,CATTLEY R,et al. Modelling,testing and analysis of a regenerative hydraulic shock absorber system[J]. Energies,2016,9:386. [148] SUDA Y,SHIIBA T. A new hybrid suspension system with active control and energy regeneration[J]. Vehicle System Dynamics,1996,25(1):641-654. [149] LI Z,ZUO L,KUANG J,et al. A motion rectifier based energy harvesting shock absorbers[C/CD]//Proceedings of the 2012 Design Engineering Conference,2012. [150] LI P,ZUO L. Assessment of vehicle performances with energy-harvesting shock absorbers[J]. SAE International Journal of Passenger Cars-Mechanical Systems,2013,6(1):18-27. [151] ZHANG Z,ZHANG X,CHEN W,et al. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle[J]. Applied Energy,2016,178:177-188. [152] GUO S,LIU Y,XU L,et al. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles[J]. Vehicle System Dynamics,2016,54:918-942. [153] NAKANO K,SUDA Y. Combined type self-powered active vibration control of truck cabins[J]. Vehicle System Dynamics,2004,41(6):449-473. [154] KAWAMOTO Y,SUDA Y,INOUE H,et al. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics,2007,1:524-535. [155] KAWAMOTO Y,SUDA Y,INOUE H,et al. Electro-mechanical suspension system considering energy consumption and vehicle manoeuvre[J]. Vehicle System Dynamics,2008,46:1053-1063. [156] FUKUMORI Y,HAYASHI R,MATSUMI R,et al. Study on independent tuning damping characteristic by coupling of electromagnetic dampers for automobiles[R]. SAE Technical Paper 01487191,2015. [157] ZHANG Y,HUANG K,YU F,et al. Experimental verification of energy-regenerative feasibility for an automotive electrical suspension system[C/CD]// Proceedings of IEEE International Conference on Vehicular Electronics and Safety,2007. [158] LIU Y,XU L,ZUO L. Design,modeling,lab and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism[J]. IEEE/ASME Transactions on Mechatronics,2017,22:1933-1943. [159] ERIKSSON J,PIROTI S. Review of methods for energy harvesting from a vehicle suspension system[R]. Royal Institute of Technology in Stockholm,2016. [160] XIE L,LI J,CAI M. Design of a hybrid energy- harvesting shock absorber[C/CD]//Proceedings of the International Forum on Energy,Environment Science and Materials,2015. [161] SATPUTE N V,SATPUTE S N,JUGULKAR L M. Hybrid electromagnetic shock absorber for energy harvesting in a vehicle suspension[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2017,231(8):1500-1517. [162] DEMETGUL M,GUNEY I. Design of the hybrid regenerative shock absorber and energy harvesting from linear movement[J]. Journal of Clean Energy Technologies,2017,5(1):81-84. [163] SATPUTE N,IWANIEC M,RAMESH N,et al. Energy harvesting shock absorber with linear generator and mechanical motion amplification[J]. Vibrations in Physical Systems,2020,31:2020104. [164] TAGHAVIFAR H. A novel energy harvesting approach for hybrid electromagnetic-based suspension system of off-road vehicles considering terrain deformability[J]. Mechanical Systems and Signal Processing,2021,146:106988. [165] KIDDEE K. Hybrid energy harvesting system based on regenerative braking system and suspension energy harvesting for middle electric vehicle[J]. Journal of Engineering and Technology,2020,8(2):29-38. [166] CASAVOLA A,IORIO F DI,TEDESCO F. A multiobjective H∞ control strategy for energy harvesting in regenerative vehicle suspension systems[J]. International Journal of Control,2018,91:741-754. [167] CASAVOLA A,TEDESCO F,VAGLICA P. H2 and H∞and optimal control strategies for energy harvesting by regenerative shock absorbers in cars[J]. Vibration,2020,3:99-115. [168] CASAVOLA A,DI IORIO F,TEDESCO F. Gain-scheduling control of electromagnetic regenerative shock absorbers for energy harvesting by road unevenness[C/CD]//Proceedings of the 2014 IEEE American Control Conference,2014. [169] DING R,WANG R C,MENG X P,et al. Study on coordinated control of the energy regeneration and the vibration isolation in a hybrid electromagnetic suspension[J]. Proceedings of The Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2017,231(11):1530-1539. [170] SHI D H,CHEN L,WANG R C,et al. Research on energy-regenerative performance of suspension system with semi-active control[J]. Journal of Vibration Engineering & Technologies,2019,7:465-475. [171] CLEMEN L,ANUBI O M,MARGOLIS D. On the regenerative capabilities of electrodynamic dampers using bond graphs and model predictive control[J]. Journal of Dynamic Systems,Measurement,and Control,2016,138:051006. [172] HAJIDAVALLOO M R,COSNER J,LI Z J,et al. Simultaneous suspension control and energy harvesting through novel design and control of a new nonlinear energy harvesting shock absorber[J]. IEEE Transactions on Vehicular Technology,2022,71(6):6073-6087 [173] ZHENG X C,YU F,ZHANG Y C. A novel energy-regenerative active suspension for vehicles[J]. Journal of Shanghai Jiaotong University,2008,13:184-188. [174] HSIEH C Y,HUANG B,GOLNARAGHI F,et al. Regenerative skyhook control for an electromechanical suspension system using a switch mode rectifier[J]. Transactions on Vehicular Technology,2016,65(12):9642-9650. [175] WU H,ZHENG L. A novel and intelligent multi-mode switching control strategy for active suspension systems with energy regeneration[J]. Vibration Engineering for Sustainable Future,2020:21-28. [176] YANG T,ZHOU S X,FANG S T,et al. Nonlinear vibration energy harvesting and vibration suppression technologies:Designs,analysis,and applications[J]. Applied Physics Reviews,2021,8:031317. [177] GONZALEZ-BUELGA A,CLARE L R,NEILD S A,et al. An electromagnetic vibration absorber with harvesting and tuning capabilities[J]. Structural Control Health Monitoring,2015,22:1359-1372. [178] GIARALIS A. An inerter-based dynamic vibration absorber with concurrently enhanced energy harvesting and motion control performances under broadband stochastic excitation via inertance amplification[J]. Journal of Risk and Uncertainty in Engineering Systems,2021,7(1):010909. [179] KREMER D,LIU K. A nonlinear energy sink with an energy harvester:Harmonically forced responses[J]. Journal of Sound and Vibration,2017,410:287-302. [180] XIONG L,TANG L,LIU K,et al. Broadband piezoelectric vibration energy harvesting using a nonlinear energy sink[J]. Journal of Physics D,2018,51:185502. [181] PENNISI G,MANN B P,NACLERIO N,et al. Design and experimental study of a nonlinear energy sink coupled to an electromagnetic energy harvester[J]. Journal of Sound and Vibration,2018,437:340-357. [182] WANG K,OUYANG H J,ZHOU J X,et al. A nonlinear hybrid energy harvester with high ultralow-frequency energy harvesting performance[J]. Meccanica,2021,56:461-480. [183] YANG T,CAO Q J,HAO Z F. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting[J]. Mechanical Systems and Signal Processing,2021,155:107636. [184] ZENG Y C,DING H,DU R H,et al. A suspension system with quasi-zero stiffness characteristics and inerter nonlinear energy sink[J]. Journal of Vibration and Control,2022,28(1-2):143-158. [185] CHEN Z S,GUO B,YANG Y M,et al. Metamaterials- based enhanced energy harvesting:A review[J]. Physica B:Condensed Matter,2014,438:1-8. [186]ANIGBOGU W,BARDAWEEL H. A metamaterial- inspired structure for simultaneous vibration attenuation and energy harvesting[J]. Shock and Vibration,2020,2020:4063025. [187] BUKHARI M,BARRY O. Simultaneous energy harvesting and vibration control in a nonlinear metastructure:A spectro-spatial analysis[J]. Journal of Sound and Vibration,2020,473:115215. [188] LU Z Q,ZHAO L,DING H,et al. A dual-functional metamaterial for integrated vibration isolation and energy harvesting[J]. Journal of Sound and Vibration,2021,509:116251. [189] WANG J Q. Simultaneous vibration suppression and energy harvesting:Damping optimization for performance limit[J]. Mechanical Systems and Signal Processing,2019,132:609-621. [190] CALISKAN K,HENZE R,KUCUKAY F. Potential of road preview for suspension control under transient road inputs[J]. IFAC-Papers,2016,49(3):117-122. [191] PAPADIMITRAKIS M,ALEXANDRIDIS A. Active vehicle suspension control using road preview model predictive control and radial basis function networks[J]. Applied Soft Computing,2022,120:108646. [192] 陈长征,王刚,于慎波. 考虑时变输入时滞及频段约束的车辆主动悬架预瞄控制[J]. 机械工程学报,2016,52(16):124-131. CHEN Changzheng,WANG Gang,YU Shenbo. Preview control of vehicle active suspensions with time-varying input delay and frequency band constraints[J]. Journal of Mechanical Engineering,2016,52(16):124-131. |
[1] | 梅雪松, 孙涛, 赵万芹, 凡正杰, 张涛, 唐程, 崔健磊, 王文君. 光学相干成像技术在激光加工过程实时监测与控制中的应用研究进展[J]. 机械工程学报, 2023, 59(15): 216-231. |
[2] | 李明, 蒋延达, 崔琦峰, 周鑫, 王治易, 施飞舟. 折纸衍生空间可展结构研究回顾与展望刍议[J]. 机械工程学报, 2021, 57(23): 53-65. |
[3] | 聂祥樊, 李应红, 何卫锋, 罗思海, 周留成. 航空发动机部件激光冲击强化研究进展与展望[J]. 机械工程学报, 2021, 57(16): 293-305. |
[4] | 汪若尘, 黄欢, 孟祥鹏, 吴涛, 陈龙. 基于虚拟样机模型的液压ISD悬架动态性能分析[J]. 机械工程学报, 2015, 51(10): 137-142. |
[5] | 李果;马士华;龚凤美;王兆华. 基于Supply-Hub的供应物流协同运作研究综述与展望[J]. , 2011, 47(20): 23-33. |
[6] | 王益群;陈春明;张伟;杨阳. 虚拟轧制技术研究进展的评述[J]. , 2010, 46(2): 34-39. |
[7] | 李端玲;张忠海;戴建生;张克涛. 变胞机构的研究综述与展望[J]. , 2010, 46(13): 14-21. |
[8] | 刘春浩;顾家铭;周赤忠;陈晓阳. 陀螺仪电动机转子轴承研究现状与展望[J]. , 2006, 42(11): 17-25. |
[9] | 温诗铸. 我国摩擦学研究的现状与发展[J]. , 2004, 40(11): 1-6. |
[10] | 王益群;张伟. 流体传动及控制技术的评述[J]. , 2003, 39(10): 95-99. |
[11] | 廖昌荣;陈伟民;余淼;黄尚廉. 基于混合模式的汽车磁流变减振器阻尼特性分析与测试[J]. , 2001, 37(5): 44-47. |
[12] | 邹慧君;蓝兆辉;王石刚;郭为忠. 机构学研究现状、发展趋势和应用前景[J]. , 1999, 35(5): 1-4. |
[13] | 张启先;张玉茹. 我国机械学研究的新进展与展望[J]. , 1996, 32(4): 1-4,10. |
[14] | 顾培亮;齐二石. 工业工程理论研究与应用的现状和展望[J]. , 1993, 29(5): 60-65. |
[15] | 唐定国;陈国民. 齿轮传动技术的现状和展望[J]. , 1993, 29(5): 35-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||