[1] SAFAE A,ATTARIAN SHANDIZ M,SANJABI S,et al. Modelling the size effect on the melting temperature of nanoparticles, nanowires and nanofilms[J]. Journal of Physics:Condensed Matter,2007,19(21):216216. [2] SKRIPOV V P,KOVERDA V P,SKOKOV V N. Size effect on melting of small particles[J]. Physica Status Solidi (a),1981,66(1):109. [3] KRAUSCH G,DETZEL T,BIELEFELDT H,et al. Growth and melting behavior of thin In films on Ge(100)[J]. Applied Physics A,1991,53:324-329. [4] LI X. Modelling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems[J]. Nanotechnology,2014,25(18):185702. [5] LU K,JIN Z H. Melting and superheating of low-dimensional materials[J]. Current Opinion in Solid State and Materials Science,2001,5(1):39-44. [6] SÁENZ-TREVIZO A,HODGE A. Nanomaterials by design:A review of nanoscale metallic multilayers[J]. Nanotechnology,2020,31(29):292002. [7] 马玉洁. 纳米金属多层膜的热稳定性研究[D]. 南京:南京大学,2019. MA Yujie. Study on the thermal stability of nanostructured metallic multilayers[D]. Nanjing:Nanjing University,2019. [8] XU J,DU Y,TIAN Y,et al. Progress in wafer bonding technology towards MEMS,high-power electronics,optoelectronics,and optofluidics[J]. International Journal of Optomechatronics,2020,14(1):94-118. [9] MU F,UOMOTO M,SHIMATSU T,et al. De-bondable SiC-SiC wafer bonding via an intermediate Ni nano-film[J]. Applied Surface Science,2019,465:591-595. [10] SHIMATSU T,UOMOTO M. Atomic diffusion bonding of wafers with thin nanocrystalline metal films[J]. Journal of Vacuum Science & Technology B,2010,28(4):706. [11] YONEZAWA G,TAKAHASHI Y,SATO Y,et al. Atomic diffusion bonding using oxide underlayers for optical applications[J]. Japanese Journal of Applied Physics,2020,59(SB):SBBC03. [12] MATSUMAE T,KURASHIMA Y,TAKAGI H. Surface activated bonding of Ti/Au and Ti/Pt/Au films after vacuum annealing for MEMS packaging[J]. Microelectronic Engineering,2018,197:76-82. [13] TAKEUCHI K,FUJINO M,SUGA T. Room temperature temporary bonding of glass substrates based on SAB method using Si intermediate layer[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology,2017,7(10):1713-1720. [14] TAKEUCHI K,FUJINO M,MATSUMOTO Y,et al. Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer[J]. Japanese Journal of Applied Physics,2018,57(4S):04FC11. [15] CHENG Z,MU F,YATES L,et al. Interfacial thermal conductance across room-temperature-bonded GaN/diamond interfaces for GaN-on-diamond devices[J]. ACS Applied Materials & Interfaces,2020,12(7):8376-8384. [16] CHENG Z,MU F,YOU T,et al. Thermal transport across ion-cut monocrystalline beta-Ga2O3 thin films and bonded beta-Ga2O3-SiC interfaces[J]. ACS Applied Materials & Interfaces,2020,12(40):44943-44951. [17] HÖNLE M,OBERHUMER P,HINGERL K,et al. Mechanism of indium tin oxide//indium tin oxide direct wafer bonding[J]. Thin Solid Films,2020,704:137964. [18] SAHOO H,OTTAVIANO L,ZHENG Y,et al. Low temperature bonding of heterogeneous materials using Al2O3 as an intermediate layer[J]. Journal of Vacuum Science & Technology B,2018,36(1):011202. [19] UTSUMI J,TAKIGAWA R. Surface activated bonding of aluminum oxide films at room temperature[J]. Scripta Materialia,2021,191:215-218. [20] FAN J,TU L C,TAN C S. High-k Al2O3 material in low temperature wafer-level bonding for 3D integration application[J]. AIP Advances,2014,4(3):031311. [21] TAKEUCHI K,MU F,MATSUMOTO Y,et al. Room temperature wafer bonding of glass using aluminum oxide intermediate layer[J]. Advanced Materials Interfaces,2021,8(5):2001741. [22] LAGANÁ S,MIKKELSEN E K,MARIE R,et al. Direct bonding of ALD Al2O3 to silicon nitride thin films[J]. Microelectronic Engineering,2014,176:71-74. [23] 马颖. 纳米多层膜高温自蔓延及反应辅助连接研究[D]. 北京:北京工业大学,2018. MA Ying. High-temperature self-propagating and reaction-assisted joining by reactive multilayer films[D]. Beijing:Beijing University of Technology,2018. [24] 林铁松,高丽娇,何鹏,等. 纳米结构多层膜自蔓延连接技术的研究及其应用[J]. 材料导报,2011,25(21):8-12,52. LIN Tiesong,GAO Lijiao,HE Peng,et al. Research and application of self-propagating joining technology in nanostructured multilayer foils[J]. Materials Reports,2011,25(21):8-12,52. [25] MAJ Ł,MARS K,MORGIEL J,et al. Reactive resistance welding of Ti6Al4V alloy with the use of Ni(V)/Al multilayers[J]. Physica Status Solidi (RRL),2017,11(2):1600405. [26] BRAEUER J,GESSNER T. A hermetic and room-temperature wafer bonding technique based on integrated reactive multilayer systems[J]. Journal of Micromechanics Microengineering,2014,24(11):115002. [27] YI Jianglong,ZHANG Yupeng,WANG Xinxin,et al. Characterization of Al/Ti nano multilayer as a jointing material at the interface between Cu and Al2O3[J]. Materials Transactions,2016,57(9):1494-1497. [28] WANG J,BESNOIN E,DUCKHAM A,et al. Room-temperature soldering with nanostructured foils[J]. Applied Physics Letters,2003,83(19):3987. [29] BOETTGE B,BRAEUER J,WIEMER M,et al. Fabrication and characterization of reactive nanoscale multilayer systems for low-temperature bonding in microsystem technology[J]. Journal of Micromechanics Microengineering,2010,20(6):064018. [30] YI Jianglong,ZHANG Yupeng,HU Haichun,et al. Characterization of Al/Ni nanoscale multilayer used for transient-liquid-phase bonding of copper and Al2O3 ceramic[J]. Rare Metal Materials and Engineering,2014,43(11):2593-2596. [31] BRIDGES D,ROULEAU C,GOSSER Z,et al. Self-powered fast brazing of Ti-6Al-4V using Ni/Al reactive multilayer films[J]. Applied Science,2018,8(6):985. [32] 李红,许保珍,杨林派,等. 反应性纳米多层膜的机理研究及其应用[J]. 焊接,2019,551(5):7-12,71. LI Hong,XU Baozhen,YANG Linpai,et al. Fundamental research and application of reactive nano-multilayers[J]. Welding & Joining,2019,551(5):7-12,71. [33] 李红,许保珍,侯金保,等. 纳米多层膜及其在材料连接应用中的研究进展[J]. 航空制造技术,2019,62(12):14-21. LI Hong,XU Baozhen,HOU Jinbao,et al. Research progress on nano-multilayer films and their applications in materials joining[J]. Aeronautical Manufacturing Technology,2019,62(12):14-21. [34] NORO J,RAMOS A S,VIEIRA M T. Intermetallic phase formation in nanometric Ni/Al multilayer thin films[J]. Intermetallics,2008,16(9):1061-1065. [35] CAVALEIRO A J,RAMOS A S,MARTINS R M S,et al. In situ phase evolution of Ni/Ti reactive multilayers[J]. Journal of Materials Engineering and Performance,2014,23(7):2446-2449. [36] CAVALEIRO A J,RAMOS A S,BRAZ FERNANDES F M,et al. Follow-up structural evolution of Ni/Ti reactive nano and microlayers during diffusion bonding of NiTi to Ti6Al4V in a synchrotron beamline[J]. Journal of Materials Processing Technology,2020,275:116354. [37] LEIFERT A,MONDIN G,DÖRFLER S,et al. Fabrication of nanoparticle-containing films and nano layers for alloying and joining[J]. Advanced Engineering Materials,2014,16(10):1264-1269. [38] WANG J,BESNOIN E,KNIO O M,et al. Effects of physical properties of components on reactive nanolayer joining[J]. Journal of Applied Physics,2005,97(11):114307. [39] RAMOS A S,CAVALEIRO A J,VIEIRA M T,et al. Thermal stability of nanoscale metallic multilayers[J]. Thin Solid Films,2014,571:268-274. [40] ZHANG Yupeng,YI Jianglong,LUO Ziyi,et al. Structural view study on diamond and copper bonding with AlNi micro/nano multilayers[J]. Rare Metal Materials and Engineering,2014,43(11):2597-2601. [41] 李红,邢增程,HODÚLOVÁ E,等. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报,2020,34(3):99-105. LI Hong,XING Zengcheng,HODÚLOVÁ E,et al. Application progress of annealing process in the study of nano-multilayer films[J]. Materials Reports,2020,34(3):99-105. [42] CAVALEIRO A J,RAMOS A S,FERNANDES F B,et al. Interaction between Ni/Ti nanomultilayers and bulk Ti-6Al-4V during heat treatment[J]. Metals,2018,8(11):878. [43] DUARTE L I,VIANA F,RAMOS A S,et al. Diffusion bonding of gamma-TiAl using modified Ti/Al nanolayers[J]. Journal of Alloy and Compounds,2012,536:S424-S427. [44] MOSZNER F,CANCELLIERI C,BECKER C,et al. Nano-structured Cu/W brazing fillers for advanced joining applications[J]. Journal of Materials Science and Engineering B,2016,6(5):226-230. [45] LEHMERT B,JANCZAK-RUSCH J,PIGOZZI G,et al. Copper-based nanostructured coatings for low-temperature brazing applications[J]. Materials Transactions,2015,56(7):1015-1018. [46] KAPTAY G,JANCZAK-RUSCH J,JEURGENS L P H. Melting point depression and fast diffusion in nanostructured brazing fillers confined between barrier nanolayers[J]. Journal of Materials Engineering and Performance,2016,25(8):3275-3284. [47] CHIODI M,CANCELLIERI C,MOSZNER F,et al. Massive Ag migration through metal/ceramic nano- multilayers:An interplay between temperature,stress- relaxation and oxygen-enhanced mass transport[J]. Journal of Materials Chemistry C,2016,4(22):4927. [48] JANCZAK-RUSCH J,CHIODI M,CANCELLIERI C,et al. Structural evolution of Ag-Cu nano-alloys confined between AlN nano-layers upon fast heating[J]. Physical Chemistry Chemical Physics,2015,17(42):28228. [49] CANCELLIERI C,KLYATSKINA E,CHIODI M,et al. The effect of interfacial Ge and RF-Bias on the microstructure and stress evolution upon annealing of Ag/AlN multilayers[J]. Applied Science,2018,8(12):2403. [50] ARAULLO-PETERS V,CANCELLIERI C,CHIODI M,et al. Tailoring fast directional mass transport of nano-confined Ag-Cu alloys upon heating:Effect of the AlN barrier thickness[J]. ACS Applied Materials & Interfaces,2019,11(6):6605-6614. |