[1] JIE F,ALDRETE M,SHAH M,et al. Thermal compression bonding for fine pitch solder interconnects[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC). May 26-29,2015,San Diego,CA,USA. New York:IEEE:7-11. [2] LI Ming,TIAN Dewen,CHEUNG Yiuming,et al. A high throughput and reliable thermal compression bonding process for advanced interconnections[C]//2015 IEEE 65th Electronic Components and Technology Conference (ECTC). May 26-29,2015,San Diego,CA,USA. New York:IEEE:603-608. [3] 邹贵生,闫剑锋,母凤文,等. 微连接和纳连接的研究新进展[J]. 焊接学报,2011,32(4):107-112. ZOU Guisheng,YAN Jianfeng,MU Fengwen,et al. Recent progress in microjoining and nanojoining[J]. Transactions of The China Welding Institution,2011,32(4):107-112. [4] AHARI A,HSIAO A,BATY G,et al. Microstructure signature evolution in solder joints,solder bumps,and micro-bumps interconnection in a large 2.5D FCBGA package during thermo-mechanical cycling[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC),May 28-31,2019,Las Vegas,NV,USA. New York:IEEE:1099-1105. [5] ZHU Q S,GAO F,MA Huicai,et al. Failure behavior of flip chip solder joint under coupling condition of thermal cycling and electrical current[J]. Journal of Materials Science:Materials in Electronics,2018,29(1):5025-5033. [6] HO C E,YANG S C,KAO C R. Interfacial reaction issues for lead-free electronic solders[M]. New York:Springer,2007. [7] LU Minhua. Effect of microstructure and alloy doping on electromigration in Pb-free solder interconnect[C]//2013 IEEE International Integrated Reliability Workshop Final Report,October 13-17,2013,South Lake Tahoe,CA,USA. New York:IEEE:190-196. [8] LAI Yishan,CHIU Yingta,CHEN Jiunn. Electromigration reliability and morphologies of Cu pillar flip-chip solder joints with Cu substrate pad metallization[J]. Journal of Electronic Materials,2008,37(10):1624-1630. [9] CHIN H S,CHEONG K Y,ISMAIL A B. A review on die attach materials for SiC-based high-temperature power devices[J]. Metallurgical & Materials Transactions B,2010,41(4):824-832. [10] GUO Wei,ZHANG Hongqiang,ZHANG Xiaoying,et al. Preparation of nanoparticle and nanowire mixed pastes and their low temperature sintering[J]. Journal of Alloys & Compounds,2017,690:86-94. [11] SUGANUMA K,SAKAMOTO S,KAGAMI N,et al. Low-temperature low-pressure die attach with hybrid silver particle paste[J]. Microelectronics Reliability,2012,52(2):375-380. [12] MANIKAM V R,CHEONG K Y. Die attach materials for high temperature applications:A review[J]. IEEE Transactions on Components,Packaging and Manufacturing Technology,2011,1(4):457-478. [13] 张颖川,闫剑锋,邹贵生,等. 纳米银与纳米铜混合焊膏用于电子封装低温烧结连接[J]. 焊接学报,2013,34(8):17-21. ZHANG Yingchuan,YAN Jianfeng,ZOU Guisheng,et al. Low temperature sintering-bonding using mixed Cu+Ag nanoparticle paste for packaging application[J]. Transactions of The China Welding Institution,2013,34(8):17-21. [14] ZHANG H,NAGAO S,SUGANUMA K. Addition of SiC particles to Ag die-attach paste to improve high-temperature stability;grain growth kinetics of sintered porous Ag[J]. Journal of Electronic Materials,2015,44(10):3896-3903. [15] WU Zijian,CAI Jian,WANG Junqiang,et al. Low-temperature Cu-Cu bonding using silver nanoparticles fabricated by physical vapor deposition[J]. Journal of Electronic Materials,2018,47(2):988-993. [16] 王帅,计红军,李明雨,等. 用于电子封装的纳米银浆低温无压烧结连接的研究[J]. 电子工艺技术,2012,33(6):317-319. WANG Shuai,JI Hongjun,LI Mingyu,et al. Pressureless low temperature sintering of Ag nanoparticles applied to electronic packaging[J]. Electronics Process Technology,2012,33(6):317-319. [17] PAKNEJAD S A,MANNAN S H. Review of silver nanoparticle based die attach materials for high power/temperature applications[J]. Microelectronics Reliability,2017,70:1-11. [18] LI Mingyu,XIAO Yong,ZHANG Zhihao,et al. Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications[J]. ACS Applied Materials & Interfaces,2015,7(17):9157-9168. [19] 杨金龙,董长城,骆健. 新型功率模块封装中纳米银低温烧结技术的研究进展[J]. 材料导报,2019,33(34):360-364. YANG Jinlong,DONG Changcheng,LUO Jian. Development of low-temperature sintered nanoscale silver for new power device packaging[J]. Materials Reports,2019,33(34):360-364. [20] GUO Wei,ZENG Zhi,ZHANG Xiaoying,et al. Low-temperature sintering bonding using silver nanoparticle paste for electronics packaging[J]. Journal of Nanomaterials,2015,2:1-7. [21] GILLMAN A,ROELOFS M J G H,MATOU K,et al. Microstructure statistics-property relations of silver particle-based interconnects[J]. Materials & Design,2017,118:304-313. [22] YU Fang,CUI Jinzi,ZHOU Zhangming,et al. Reliability of Ag sintering for power semiconductor die attach in high temperature applications[J]. IEEE Transactions on Power Electronics,2017,32(9):7083-7095. [23] SIOW K S. Mechanical properties of nano-silver joints as die attach materials[J]. Journal of Alloys & Compounds,2012,514:6-19. [24] 邓钟炀,贾强,冯斌,等. 脉冲激光沉积高性能薄膜及其应用研究进展[J]. 中国激光,2021,48(8):0802010. DENG Zhongyang,JIA Qiang,FENG Bin,et al. Research progress on fabrication and applications of high-performance films by pulsed laser deposition[J]. Chinese Journal of Lasers,2021,48(8):0802010. [25] SCHMITT W,CHEW L M,MILLER R. Pressure-less sintering on large dies using infrared radiation and optimized silver sinter paste[C]//2018 IEEE 68th Electronic Components and Technology Conference (ECTC),May 29-June 1,2018,Las Vegas,USA. New York:IEEE,2018:539-544. [26] ZHANG Hongqiang,ZOU Guisheng,LIU Lei,et al. Low temperature sintering of silver nanoparticle paste for electronic packaging[C]//2016 International Conference on Electronics Packaging (ICEP),April 20-22,2016,Hokkaido,Japan. New York:IEEE,2016:314-317. [27] ZHANG Hongqiang,WANG Wengan,BAI Hailin,et al. Microstructural and mechanical evolution of silver sintering die attach for SiC power devices during high temperature applications[J]. Journal of Alloys and Compounds,2019,774:487-494. [28] HEUCK N,MVLLER S,PALM G,et al. Swelling phenomena in sintered silver die attach structures at high temperatures:Reliability problems and solutions for an operation above 350℃[C]//International Conference and Exhibition on High Temperature Electronics 2010,HiTEC 2010,2010:18-25. [29] FENG Bin,SHEN Daozhi,WANG Wengan,et al. Cooperative bilayer of lattice-disordered nanoparticles as room-temperature sinterable nanoarchitecture for device integrations[J]. ACS Applied Materials & Interfaces,2019,11(18):16972-16980. [30] ZUBIR N S M,ZHANG Hongqiang,ZOU Guisheng,et al. Large-area die-attachment sintered by organic-free Ag sintering material at low temperature[J]. Journal of Electronic Materials,2019,48:7562-7572. [31] WANG Wengan,ZOU Guisheng,JIA Qiang,et al. Mechanical properties and microstructure of low temperature sintered joints using organic-free silver nanostructured film for die attachment of SiC power electronics[J]. Materials Science and Engineering A,2020,793:139894. [32] JIA Qiang,ZOU Guisheng,WANG Wengan,et al. Sintering mechanism of a supersaturated Ag-Cu nanoalloy film for power electronic packaging[J]. ACS Applied Materials & Interfaces,2020,12(14):16743-16752. [33] KIM M S,NISHIKAWA H. Effects of bonding temperature on microstructure,fracture behavior and joint strength of Ag nanoporous bonding for high temperature die attach[J]. Materials Science and Engineering A,2015,645:264-272. |