机械工程学报 ›› 2022, Vol. 58 ›› Issue (19): 166-179.doi: 10.3901/JME.2022.19.166
秦红玲1, 徐行2, 舒现维2, 张小龙2, 李响2
收稿日期:
2021-09-05
修回日期:
2022-03-23
出版日期:
2022-10-05
发布日期:
2023-01-05
通讯作者:
李响(通信作者),男,1979年出生,博士,副教授。主要研究方向为多孔结构拓扑优化。E-mail:lixiangcfy@ctgu.edu.cn
作者简介:
秦红玲,女,1978年出生,博士,教授,博士研究生导师。主要研究方向为摩擦学及表面工程。E-mail:qhl@ctgu.edu.cn
基金资助:
QIN Hongling1, XU Xing2, SHU Xianwei2, ZHANG Xiaolong2, LI Xiang2
Received:
2021-09-05
Revised:
2022-03-23
Online:
2022-10-05
Published:
2023-01-05
摘要: 多孔储液介质是启发自关节软骨的仿生摩擦材料,因具有良好的自润滑性能,在工业生产中发挥着重要作用。早期多孔储液介质多是针对不同基体材料及骨架结构进行优化设计,或是根据单因素理想边界建立润滑数值模型,对多孔储液介质的润滑机理缺乏系统的理论描述,限制了其大规模的工业应用。根据不同的结构形式和润滑机理,将多孔储液介质分为有限直孔储液介质和随机多孔储液介质,总结了有限直孔储液介质中空化现象、流体运动、惯性效应、气-液耦合对润滑性能的影响,论述了基于渗流力学、流-固耦合作用的随机多孔储液介质自润滑理论的发展,以及多孔储液介质的应用现状。分析和讨论了多孔储液介质自润滑机理研究的难点问题,对推动多孔储液介质润滑机理的研究和工程实践应用具有重要的参考意义。
中图分类号:
秦红玲, 徐行, 舒现维, 张小龙, 李响. 多孔储液介质自润滑机理研究进展[J]. 机械工程学报, 2022, 58(19): 166-179.
QIN Hongling, XU Xing, SHU Xianwei, ZHANG Xiaolong, LI Xiang. Research Progress on the Self-lubrication Mechanism of Liquid-porous Medium[J]. Journal of Mechanical Engineering, 2022, 58(19): 166-179.
[1] 温诗铸. 润滑理论研究的进展与思考[J]. 摩擦学学报,2007,27(6):497-503. WEN Shizhu. Study on lubrication theory-progress and thinking-over[J]. Tribology,2007,27(6):497-503. [2] 周峰,吴杨. “润滑”之新解[J]. 摩擦学学报,2016,36(1):132-136. ZHOU Feng,WU Yang. A novel insight into "Lubrication" [J]. Tribology,2016,36(1):132-136. [3] FALL A,WEBER B,PAKPOUR M,et al. Sliding friction on wet and dry sand[J]. Physical Review Letters,2014,112:175501-175502. [4] 戴振东,佟金,任露泉. 仿生摩擦学研究及发展[J]. 科学通报,2006,51(20):2353-2359. DAI Zhendong,TONG Jin,REN Luquan.Researches and developments of biomimetics in tribology[J].Chinese Science Bulletin,2006,51(20):2353-2359. [5] 张嗣伟. 发展仿生摩擦学的展望[J]. 润滑与密封,2018,43(1):1-2. ZHANG Siwei. Prospects for the development of biomimetic tribology[J]. Lubrication Engineering,2018,43(1):1-2. [6] LIN C,KAPER H J,LI W,et al. Role of endothelial glycocalyx in sliding friction at the catheter-blood vessel interface[J]. Sci Rep,2020,10(1):11855. [7] ZHU Z H,NATHAN R,WU Q. An experimental study of the lubrication theory for highly compressible porous media,with and without lateral leakage[J]. Tribology International,2018,127:324-332. [8] LANG J,NATHAN R,WU Q. Theoretical and experimental study of transient squeezing flow in a highly porous film[J]. Tribology International,2019,135:259-268. [9] SABOORI P,GERMANIER C,SADEGH A. Mechanics of CSF flow through trabecular architecture in the brain[C]// Southern Biomedical Engineering Conference,Berlin Heidelberg. Berlin,Heidelberg: Springer,2010,32: 440-443. [10] YANG C,JIANG P,QIN H,et al. 3D printing of porous polyimide for high-performance oil-impregnated self-lubricating[J]. Tribology International,2021,160:107009. [11] QIN H,XU R,LAN P,et al. Wear performance of metal materials fabricated by powder bed fusion:A literature review[J]. Metals,2020,10(3):304. [12] SHAO M,LI S,DUAN C,et al. Cobweb-like structural stimuli responsive composite with oil-warehouse and transportation system for oil-storage and recyclable smart-lubrication.[J]. Acs Applied Materials & Interfaces,2018,10(48):41699-41706. [13] HAMILTON D,WALOWIT J,ALLEN C. A theory of lubrication by microirregularities[J]. Journal of Basic Engineering,1966,88(1):177. [14] KLIGERMAN Y,ETSION I,SHINKARENKO A. Improving tribological performance of piston rings by partial surface texturing[J]. Journal of Tribology,2005,127(3):632-638. [15] GRABON W,KOSZELA W,PAWLUS P,et al. Improving tribological behaviour of piston ring–cylinder liner frictional pair by liner surface texturing[J]. Tribology International,2013,61:102-108. [16] HUA X,SUN J,ZHANG P,et al. Research on discriminating partition laser surface micro-texturing technology of engine cylinder[J]. Tribology International,2016,98:190-196. [17] ETSION I,BURSTEIN L. A model for mechanical seals with regular microsurface structure[J]. Tribology Transactions,1996,39(3):677-683. [18] ETSION I. State of the art in laser surface texturing[J]. Advanced Tribology,2010:761-762. [19] YAMAKIRI H,SASAKI S,KURITA T,et al. Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water[J]. Tribology International,2011,44(5):579-584. [20] WAN Y,XIONG D. The effect of laser surface texturing on frictional performance of face seal[J]. Journal of Materials Processing Technology,2008,197(1):96-100. [21] KOVALCHENKO A,AJAYI O,ERDEMIR A,et al. The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact[J]. Tribology International. 2004,38(3):219-225. [22] ZHANG J,MENG Y. Direct observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces[J]. Tribology Letters,2012,46(2):147-158. [23] QIU Y,KHONSARI M M. Experimental investigation of tribological performance of laser textured stainless steel rings[J]. Tribology International,2011,44(5):635-644. [24] WANG J H,YAN Z J,FANG X,et al. Observation and experimental investigation on cavitation effect of friction pair surface texture[J]. Lubrication Science,2020,32(8):404-414. [25] GROPPER D,LING W,HARVEY T. Hydrodynamic lubrication of textured surfaces:A review of modeling techniques and key findings[J]. Tribology International,2016,94:509-529. [26] 温诗铸,黄平. 摩擦学原理[M]. 4版. 北京:清华大学出版社,2012. WEN Shizhu,HUANG Ping. Principles of tribology [M]. 4th Edition. Beijing:Tsinghua University Press,2012. [27] 黄平. 润滑数值计算方法[M]. 北京:高等教育出版社,2012. HUANG Ping. Numerical calculation method of lubrication[M]. Beijing:Higher Education Press,2012. [28] DOWSON D. A generalized Reynolds equation for fluid-film lubrication[J]. International Journal of Mechanical Sciences. 1962,4(2):159-170. [29] GAO L,YANG P,DYMOND I,et al. Effect of surface texturing on the elastohydrodynamic lubrication analysis of metal-on-metal hip implants[J]. Tribology International,2010,43(10):1851-1860. [30] 刘应中,缪国平. 高等流体力学[M]. 上海:上海交通大学出版社,2000. LIU Yingzhong,MIAO Guoping. Advanced fluid mechanics[M]. Shanghai:Shanghai Jiao Tong University Press,2000 [31] ORON A,DAVIS S H,BANKOFF S G. Long-scale evolution of thin liquid films[J]. Reviews of Modern Physics,1997,69(3):931-980. [32] DOBRICA M B,FILLON M. About the validity of Reynolds equation and inertia effects in textured sliders of infinite width[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2009,223(1):69-78. [33] DOBRICA M B,FILLON M,MASPEYROT P. Mixed elastohydrodynamic lubrication in a partial journal bearing—comparison between deterministic and stochastic models[J]. Journal of Tribology,2006,128(4):778-788. [34] BILLY F,ARGHIR M,PINEAU G. Navier-Stokes analysis of two-dimensional roughness pattern under turbulent flow regime[C]//ASME/STLE 2004 International Joint Tribology Conference,2004:559-568. [35] ARGHIR M,ROUCOU N,HELENE M,et al. Theoretical analysis of the incompressible laminar flow in a macro-roughness cell[J]. Journal of Tribology,2003,125(2):309-318. [36] HELENE M,ARGHIR M,FRENE J. Numerical three-dimensional pressure patterns in a recess of a turbulent and compressible hybrid journal bearing[J]. Journal of Tribology,2003,125(2):301-308. [37] SAHLIN F,GLAVATSKIH S,ALMQVIST T,et al. Two-dimensional CFD-analysis of micro-patterned surfaces in hydrodynamic lubrication[J]. Journal of Tribology,2005,127(1):96-102. [38] SABLIN F. CFD-analysis of hydrodynamic lubrication of textured surfaces[D]. Luleå:Luleå Tekniska Universitet,2003. [39] DEKRAKER A,VANOSTAYEN R,RIXEN D. Development of a texture averaged Reynolds equation[J]. Tribology International,2010,43(11):2100-2109. [40] CUPILLARD S,CERVANTES M,GLAVATSKIH S. Pressure buildup mechanism in a textured inlet of a hydrodynamic contact[J]. Journal of Tribology,2008,130(2):1-10. [41] CUPILLARD S,GLAVATSKIH S,CERVANTES M J. Inertia effects in textured hydrodynamic contacts[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2010,224(8):751-756. [42] MENG F,ZHANG L,LIU Y,et al. Effect of compound dimple on tribological performances of journal bearing[J]. Tribology International,2015,91:99-110. [43] SINGHAL A K,ATHAVALE M M,LI H,et al. Mathematical basis and validation of the full cavitation Model[J]. Journal of Fluids Engineering,2002,124(3):617-624. [44] WANG J,HAN Z,CHEN H,et al. Drag Reduction by Dimples on Surfaces in Plane–Plane Contact Lubrication[J]. Tribology,2009,31(3):159-166. [45] 朱效谷,李勇,李文平. 电解水式驻留微气泡减阻技术及其可行性分析[J]. 船舶力学,2014,18(10):1165-1174. ZHU Xiaogu,LI Yong,LI Wenping. Electrolyzed water retention microbubble drag reduction technology and its feasibility analysis[J]. Ship Mechanics,2014,18(10):1165-1174. [46] PLESSET M S,PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics,1977,9(1):145-185. [47] HABIL S I. Physical and numerical modeling of unsteady cavitation dynamics[C]// ICMF-2001,4th International Conference on Multiphase Flow. 2001. [48] CHAMNIPRASART K,AL-SHARIF A,RAJAGOPAL K R,et al. Lubrication with binary mixtures:Bubbly oil[J]. Journal of Tribology,1993,115(2):253-260. [49] 韩中领,汪家道,陈大融. 凹坑表面形貌在面接触润滑状态下的减阻研究[J]. 摩擦学学报,2009,29(1):10-16. HAN Zhongling,WANG Jiadao,CHEN Darong. Drag reduction by dimples on surfaces in plane-plane contact lubrication[J]. Tribology,2009,29(1):10-16. [50] CHEN H,LI J,CHEN D. Study of drag forces on a designed surface in bubbly water lubrication using electrolysis[J]. Journal of Fluids Engineering,2006,128(6):1383-1389. [51] 渡边侊尚,韩凤麟. 烧结含油轴承[J]. 粉末冶金技术, 2002,20(3):120-127. TERUHISA Watanabe,HAN Fenglin. Porous sintered bearings[J]. Powder Metallurgy Techonology,2002(3):120-127. [52] BEAR J. Dynamics of fluids in porous media[J]. Soil Science,1975,120(2):162-163. [53] NONG K,ANDERSON D M. Thin film evolution over a thin porous layer:Modeling a tear film on a contact lens[J]. Siam Journal on Applied Mathematics,2010,70(7):2771-2795. [54] TICHY J A. A porous media model for thin film lubrication[J]. Journal of Tribology,1995,117(1):16-21. [55] SKOTHEIM J M,MAHADEVAN L. Soft lubrication[J]. Physical Review Letters,2004,92(24):245509. [56] SKOTHEIM J M,MAHADEVAN L. Soft lubrication,lift and optimality[C]// APS Division of Fluid Dynamics Meeting,2006. [57] STEPHEN W. Flow in porous media I:A theoretical derivation of Darcy's law[J]. Transport in Porous Media. 1986,1(1):3-25. [58] VAFAI K,KIM S J. On the limitations of the Brinkman-Forchheimer-extended Darcy equation[J]. International Journal of Heat and Fluid Flow,1995,16(1):11-15. [59] BRINKMAN H C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[J]. Flow,Turbulence and Combustion,1949,1(1):27. [60] BOUBENDIR S,LARBI Salah,BENNACER R. Elastic Deformation Effects on the Thermo-Hydrodynamic Aspect of Porous Journal Bearings[J]. Defect and Diffusion Forum,2014,353:275-279. [61] ABDALLAH A E,LOTFI H G. Hydrodynamic lubrication of porous journal bearings using a modified Brinkman-extended Darcy model[J]. Tribology International,2001,34(11):767-777. [62] BEAVERS G S,JOSEPH D D. Boundary conditions at a naturally permeable wall[J]. Journal of Fluid Mechanics. 1967,30(1):197-207. [63] 许友生,刘慈群,林机. Darcy渗流定律的微观界定及其应用[J]. 应用数学和力学,2004,25(3):253-261. XU Yousheng,LIU Ciqun,LIN Ji. Microcosmic bound theorem of Daycy’s law and its application[J]. Applied Mathematics and Mechanics,2004(3):253-261. [64] IRMAY S. On the hydraulic conductivity of unsaturated soils[J]. Transactions,American Geophysical Union,1954,35(3):463-467. [65] SAKIM A,NABHANI M,ELKHLIFI M. Non-Newtonian effects on porous elastic journal bearings[J]. Tribology International,2018,120:23-33. [66] WINKLER E. Die Lehre von Elastizitat und Festigkeit [M]. 1867. [67] MACKAY F,TONER J,MOROZOV A,et al. Darcy’s law without friction in active nematic rheology[J]. Physical Review Letters,2020,124(18):187801. [68] SUTERA S P,SKALAK R. The history of Poiseuille's law[J]. Annual Review of Fluid Mechanics,1993,25:1-20. [69] GUILAK F,MOW V C. The mechanical environment of the chondrocyte:A biphasic finite element model of cell-matrix interactions in articular cartilage[J]. Journal of Biomechanics,2000,33(12):1663-1673. [70] MOW V C,KUEI S C,LAI W M,et al. Biphasic creep and stress relaxation of articular cartilage in compression:Theory and experiments[J]. Journal of Biomechanical Engineering,1980,102(1):73-84. [71] TERZAGHI K T. Theoretical soil mechanics[M/OL]. December 2007. https://www.wiley.com/en-us/export-Product/pdf/9780470172766. [72] 丁洲祥. 渗透力概念的力学分析及广义化探讨[J]. 岩土工程学报,2017,39(11):2088-2101. DING Zhouxiang. Mechanical fundamentals of seepage force concept and its generalization[J]. Chinese Journal of Geotechnical Engineering,2017,39(11):2088-2101. [73] BIOT M A,MAURIC A. General theory of three‐dimensional consolidation[J]. Journal of Applied Physics, 1941,12(2):155-164. [74] FENG J,WEINBAUM S. Lubrication theory in highly compressible porous media:The mechanics of skiing,from red cells to humans[J]. Journal of Fluid Mechanics. 2000,422:281-317. [75] WU Q,ANDREOPOULOS Y,XANTHOS S,et al. Dynamic compression of highly compressible porous media with application to snow compaction[J]. Journal of Fluid Mechanics,2005,542(-1):281-304. [76] 李传亮,杜志敏,孔祥言,等. 多孔介质的流变模型研究[J]. 力学学报,2003,35(2):230-234. LI Chuanliang,DU Zhimin,KONG Xiangyan,et al. A study on the rheological model of porous media[J]. Chinese Journal of Theoretical and Applied Mechanics,2003,35(2):230-234. [77] 李培超,李贤桂,卢德唐. 饱和土体一维固结理论的修正——饱和多孔介质流固耦合渗流模型之应用[J]. 中国科学技术大学学报,2010,40(12):1273-1278. LI Peichao,LI Xiangui,LU Detang. A modified form for the uniaxial consolidation theory in saturated soils :an application of mathematical models for flow-deformation coupling in saturated porous media[J]. Journal of University of Science and Technology of China,2010,40( 12):1273-1278. [78] 李培超,孔祥言,卢德唐. 饱和多孔介质流固耦合渗流的数学模型[J]. 水动力学研究与进展(A辑),2003(4):419-426. LI Peichao,KONG Xiangyan,LU Detang. Mathematical modeling of flow in saturated porous media on account of fluid-structure coupling effect[J]. Chinese Journal of Hydrodynamics,2003,18( 4) :419-426. [79] BUJURKE N M,PATIL H P. The effects of variable permeability and roughness of porous bearings[J]. Pergamon. 1992,34(5):355-362. [80] STAFFAN T. Packing mechanics of fiber reinforcements[J]. Polymer Engineering & Science. 1998,38(8):1337-1350. [81] 房营光,陈建,谷任国,等. 基于有效比表面积修正的Kozeny-Carman方程在黏土渗透中的适用性研究[J]. 岩土力学,2020,41(8):2547-2554. FANG Yingguang,CHEN Jian,GU Renguo,et al. Applicability of clay permeability based on modified Kozeny-Carman equation by effective specific surface area[J]. Rock and Soil Mechanics,2020(8):1-8. [82] PATEL J R,DEHERI G. Shliomis model-based magnetic squeeze film in rotating rough curved circular plates:A comparison of two different porous structures[J]. International Journal of Computational Materials Science & Surface Engineering,2014,6(1):29-49. [83] IRMAY S. On the hydraulic conductivity of unsaturated soils[J]. Transactions,American Geophysical Union, 1954,35:463. [84] BIOT M A. General solutions of equations of elasticity and consolidation for a porous material[J]. Journal of Applied Mechanics,American Society of Mechanical Engineers,1956,78:91-96. [85] CAMERON A,MORGAN V,STAINSBY A. Critical conditions for hydrodynamic lubrication of porous metal bearings[J]. Proceedings of the Institution of Mechanical Engineers,1962,176:761-770. [86] ZHU Z,NATHAN R,WU Q. On the gravity-driven sliding motion of a planar board on a tilted soft porous layer[J]. Tribology Letters,2019,67(4):126. [87] WANG Q,ZHU Z,NATHAN R,et al. On the study of fluid flow in a soft porous media using a scaled-up indenter[J]. European Journal of Mechanics-B/Fluids,2019,76:332-339. [88] SAINTYVES B,JULES T,SALEZ T,et al. Self-sustained lift and low friction via soft lubrication[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(21):201525462. [89] ZHU Z,NATHAN R,WU Q. Multi-scale soft porous lubrication[J]. Tribology International,2019,137:246-253. [90] GACKA T,ZHU Z,CRAWFORD R,et al. From red cells to soft lubrication,an experimental study of lift generation inside a compressible porous layer[J]. Journal of Fluid Mechanics,2017,818:5-25. [91] LANG J,SANTHANAM S,WU Q. Exact and approximate solutions for transient squeezing flow[J]. Physics of Fluids,2017,29:103606. [92] ROBERT C,GERARD F J,LIDAN Y,et al. Compression-dependent permeability measurement for random soft porous media and its implications to lift generation[J]. Chemical Engineering Science,2011,66(3):294-302. [93] CHEN W,ZHU P,LIANG H,et al. Molecular dynamics simulations of lubricant recycling in porous polyimide retainers of bearing[J]. Langmuir,2021,37(7):2426-2435. [94] CHEN W,WANG W,LIANG H,et al. Molecular dynamics simulations of lubricant outflow in porous polyimide retainers of bearings[J]. Langmuir,2021,37(30):9162-9169. [95] YE J,LI J,QING T,et al. Effects of surface pore size on the tribological properties of oil-impregnated porous polyimide material[J]. Wear,2021,484-485:204042. [96] ZHANG D,WANG T,WANG Q,et al. Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification[J]. Journal of Applied Polymer Science,2017,134(29):45106. [97] LIN P,ZHANG R,WANG X,et al. Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance[J]. ACS Macro Letters,2016,5(11):1191-1195. [98] GUO J,DU H,ZHANG G,et al. Fabrication and tribological behavior of Fe-Cu-Ni-Sn-Graphite porous oil-bearing self-lubricating composite layer for maintenance-free sliding components[J]. Materials Research Express, 2021,8(1):15801-15810. [99] ZHANG R,LIN P,YANG W,et al. Simultaneous superior lubrication and high load bearing by the dynamic weak interaction of a lubricant with mechanically strong bilayer porous hydrogels[J]. Polymer Chemistry,2017,8:7102-7107. [100] 马志杰,李京育,曹放,等. 多孔碳化硅涂覆生物活性钽新型生物医用材料的影响因素及生物学性能[J]. 中国组织工程研究,2021(4):558-563. MA Zhijie,LI Jingyu,CAO Fang,et al. Influencing factors and biological property of novel biomedical materials:porous silicon carbide coated with bioactive tantalum[J]. Chinese Journal of Tissue Engineering Research,2021(4):558-563. [101] 范望喜. 多孔UHMWPE仿生骨材料的制备和性能研究[J]. 化工新型材料,2020,48(9):86-90. FAN Wangxi. Study on preparation and properties of porous bionic bone materials based on UHMWPE[J]. New Chemical Materials,2020,48(9):86-90. [102] JASON P G,STEPHEN B D,RUSSELL F W,et al. Analysis of frictional behavior and changes in morphology resulting from cartilage articulation with porous polyurethane foams[J]. Journal of Orthopaedic Research, 2010,28(10):1292-1299. [103] MAYR H O,KLEHM J,SCHWAN S,et al. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects:Biomechanical results[J]. Acta Biomaterialia,2013,9(1):4845-4855. [104] 胡海波,刘会群,王杰恩,等. 生物医用多孔钛及钛合金的研究进展[J]. 材料导报,2012,26(S1):262-266. HU Haibo,LIU Huiqun,WANG Jieen,et al. Research progress of biomedical porous titanium and titanium alloys[J]. Materials Review,2012,26(S1):262-266. [105] 吴刚,王成焘,张文光. 仿生人工软骨材料的摩擦磨损性能及润滑机理研究[J]. 摩擦学学报,2009,29(2):157-162. WU Gang,WANG Chengtao,ZHANG Wenguang. Study on the friction and wear performance and lubrication mechanism of bionic artificial cartilage materials[J]. Acta Tribology,2009,29(2):157-162. [106] MCKELLOP H,CLARKE I,MARKOLF K,et al. Friction and wear properties of polymer,metal,and ceramic prosthetic joint materials evaluated on a multichannel screening device[J]. Journal of Biomedical Materials Research,1981,15(5):619-653. [107] SHARKEY P F,HOZACK W J,ROTHMAN R H,et al. Why are total knee arthroplasties failing today?[J]. Journal of Arthroplasty,2014,29(9):1774-1778. [108] 轩福贞,朱明亮,王国彪. 结构疲劳百年研究的回顾与展望[J]. 机械工程学报,2021,57(6):26-51. XUAN Fuzhen,ZHU Mingliang,WANG Guobiao. Review and prospect of centennial research on structural fatigue[J]. Journal of Mechanical Engineering,2021,57(6):26-51. [109] WANG J Q,ZHAO H J,HUANG W,et al. Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication[J]. Wear,2017,380-381:52-58. [110] ZHANG G T,YIN Y G,XU M,et al. Tribological properties and mechanism of the bilayer iron based powder metallurgy materials[J]. Industrial Lubrication and Tribology,2018,70(9):1642-1648. [111] 张国涛,尹延国. 铁基含油轴承材料表面硫化改性及摩擦学性能[J]. 中国有色金属学报,2020,30(2):348-354. ZHANG Guotao,YIN Yanguo. Surface sulfurization modification and tribological properties of iron-based oil bearing materials[J]. The Chinese Journal of Nonferrous Metals,2020,30(2):348-354. [112] 燕松山,杨威然,解芳,等. Sn-Ag-Cu/金属陶瓷自润滑轴承滚子高温滚阻特性研究[J]. 润滑与密封,2020,45(2):12-16. YAN Songshan,YANG Weiran,XIE Fang,et al.Study on high temperature rolling resistance characteristics of Sn-Ag-Cu /metal ceramic self-lubricating bearing rollers[J].Lubrication Engineering,2020,45(2) :12-16. [113] 邱优香,王齐华,王超,等. 多孔聚酰亚胺含油材料的储油性能及摩擦学行为研究[J]. 摩擦学学报,2012,32(6):538-543. QIU Youxiang,WANG Qihua,WANG Chao,et al. Study on oil storage performance and tribological behavior of porous polyimide oil-containing materials[J]. Tribology,2012,32(6):538- 543. [114] 吴海勇,林清容,陈志雄,等. 定向孔隙多孔储油介质的制备与评价[J]. 润滑与密封,2020,45(9):94-101. WU Haiyong,LIN Qingrong,CHEN Zhixiong,et al. Preparation and evaluation of porous oil storage medium with oriented pores[J]. Lubrication Engineering,2020,45(9):94-101. |
[1] | 王伟, 魏春艳, 屈怡珅, 董少文, 吕凡凡, 金杰, 王快社. 黑磷烯量子点作为水基润滑添加剂的摩擦学性能研究[J]. 机械工程学报, 2024, 60(3): 226-237. |
[2] | 解忠良, 焦见, 杨康. 水润滑夹心轴承流-固耦合动力学特性研究[J]. 机械工程学报, 2023, 59(3): 86-97. |
[3] | 解忠良, 焦见, 杨康. 舰船用水润滑轴承微观界面润滑机理研究[J]. 机械工程学报, 2022, 58(21): 186-200. |
[4] | 崔颖, 于颖嘉, 张宏翔, 钟兢军. 基于多孔介质理论的双粗糙面金属静密封泄漏模型[J]. 机械工程学报, 2022, 58(21): 215-224. |
[5] | 刘浩, 须颖, 罗杨泉, 肖海善. 基于深度学习的多孔介质渗透率预测[J]. 机械工程学报, 2022, 58(14): 328-336. |
[6] | 翟富刚, 李超, 叶子, 谭昌宇, 陈誉. 内置过滤器边界对小型化液压油箱内流场的影响[J]. 机械工程学报, 2021, 57(24): 114-122. |
[7] | 赵海林, 陈国定, 苏华. 考虑粗糙渗流效应的指尖密封总泄漏性能分析[J]. 机械工程学报, 2020, 56(3): 152-161. |
[8] | 宋敏,王攀,古晓东. 有限元分析在接触网空气受流特性方面的研究[J]. 电气工程学报, 2019, 14(4): 51-59. |
[9] | 童华, 陈明旸, 祝效华. 一种新型井下排水采气泵的设计与仿真[J]. 机械工程学报, 2018, 54(20): 320-329. |
[10] | 杨丽红, 沈航明, 叶骞, 刘成良. 等温容器内多孔介质分布对强化导热以及等温性能的影响*[J]. 机械工程学报, 2017, 53(5): 146-152. |
[11] | 李冰, 李欣欣, 毛汉领, 黄振峰. 基于多孔介质的甘蔗压榨流固耦合分析[J]. 机械工程学报, 2017, 53(12): 192-200. |
[12] | 魏志刚, 朱雪冰, 陈效华, 张李侠. 汽车控制臂后衬套台架试验疲劳寿命分析[J]. 机械工程学报, 2016, 52(12): 81-89. |
[13] | 王美琪;刘 彬;闻 岩;刘浩然. 篦冷机的渗流传热模型与数值模拟[J]. , 2014, 50(24): 152-157. |
[14] | 夏焕雄;向东;牟鹏. 面向布气均匀性的竖直式喷淋头布气系统优化设计[J]. , 2014, 50(19): 112-119. |
[15] | 汪健生;田永生;吴翠. 往复式斯特林发动机回热器特性研究[J]. , 2013, 49(8): 151-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||