机械工程学报 ›› 2022, Vol. 58 ›› Issue (19): 148-165.doi: 10.3901/JME.2022.19.148
王悦昶1, 刘莹2, 李鸿举2
收稿日期:
2021-09-14
修回日期:
2022-03-04
出版日期:
2022-10-05
发布日期:
2023-01-05
通讯作者:
刘莹(通信作者),女,1965年出生,博士,副教授。主要研究方向为机械设计及理论、润滑与密封。E-mail:liuying@mail.tsinghua.edu.cn
作者简介:
王悦昶,男,1993年出生,博士,博士后。主要研究方向为表面形貌表征与仿真、边界/混合润滑、摩擦化学。E-mail:y.wang1@leeds.ac.uk
基金资助:
WANG Yuechang1, LIU Ying2, LI Hongju2
Received:
2021-09-14
Revised:
2022-03-04
Online:
2022-10-05
Published:
2023-01-05
摘要: 粗糙表面在自然界普遍存在。在研究表界面现象时,粗糙表面往往是重要的输入信息。实际测量和数值仿真是获取粗糙表面的两种常用方法。与实际测量相比,数值仿真无需昂贵的测量设备和大量机时,即可根据给定的表面特征信息高效地批量生成粗糙表面。目前,表面仿真已有近五十年的发展历史,基于不同表面形貌特征形成了采用多种表面特征参数的多种仿真方法,在摩擦学研究中应用广泛。梳理和总结表面仿真方法利于方法的高效、准确应用以及进一步发展。考虑到表面仿真方法与表面形貌特征及其表征参数密切相关,为了系统全面地综述表面仿真方法,首先介绍与表面仿真相关的形貌特征表征方法及特征参数。随后,以不同特征为线索对相应的表面仿真方法的原理、算法、优缺点进行梳理,初步提出了方法选用建议,并整理了其在摩擦学研究中的典型应用,最后展望了未来粗糙表面仿真的可能研究方向。
中图分类号:
王悦昶, 刘莹, 李鸿举. 粗糙表面仿真方法综述[J]. 机械工程学报, 2022, 58(19): 148-165.
WANG Yuechang, LIU Ying, LI Hongju. A Review of Rough Surface Simulation Methods[J]. Journal of Mechanical Engineering, 2022, 58(19): 148-165.
[1] HIGGINS A,SIDERIUS M. Acoustic wave scattering from dynamic rough sea-surfaces using the finite-difference time-domain method[J]. The Journal of the Acoustical Society of America,2019,145(3):1781. [2] 徐润汶,郭立新,宋小弟. 随机粗糙面电磁散射特性的FEM/PML研究[J]. 微波学报,2018,34(1):29-32. XU Runwen,GUO Lixin,SONG Xiaodi. Study on Scattering from Random Rough Surface by FEM/PML[J]. Journal of Microwaves. 2018,34(1):29-32. [3] WARNICK K F,CHEW W C. Numerical simulation methods for rough surface scattering[J]. Waves in Random Media,2001,11(1):R1-R30. [4] JANG Y H,BARBER J R. Effect of contact statistics on electrical contact resistance[J]. Journal of Applied Physics,2003,94(11):7215-7221. [5] JACKSON R L,CRANDALL E R,BOZACK M J. Rough surface electrical contact resistance considering scale dependent properties and quantum effects[J]. Journal of Applied Physics,2015,117(19):195101. [6] BI D M,JIANG M,CHEN H X,et al. Effects of thermal conductivity on the thermal contact resistance between non-conforming rough surfaces:An experimental and modeling study[J]. Applied Thermal Engineering,2020,171:115037 [7] CIAVARELLA M,MUROLO G,DEMELIO G. The electrical/thermal conductance of rough surfaces––the Weierstrass–Archard multiscale model[J]. International Journal of Solids and Structures,2004,41(15):4107-4120. [8] 李玲,王晶晶,裴喜永,等. 机械结合面接触刚度建模新方法[J]. 机械工程学报,2020,56(9):162-169. LI Ling,WANG Jingjing,PEI Xiyong,et al. A New Method for Modeling Mechanical Joint Surface Contact Stiffness[J]. Journal of Mechanical Engineering,2020,56(9):162-169. [9] 温诗铸,黄平,田煜. 摩擦学原理[M]. 北京:清华大学出版社,2018. WEN Shizhu,HUANG Ping,TIAN Yu. Principles of tribology[M]. Beijing:Tsinghua University Press,2018. [10] WHITEHOUSE D J. Surfaces — A Link between Manufacture and Function[J]. Proceedings of the Institution of Mechanical Engineers,1978,192(1):179-188. [11] WHITEHOUSE D J. Function maps and the role of surfaces[J]. International Journal of Machine Tools and Manufacture,2001,41(13):1847-1861. [12] 何宝凤,丁思源,魏翠娥,等. 三维表面粗糙度测量方法综述[J]. 光学精密工程,2019,27:78-93. HE Baofeng,DING Siyuan,WEI Cuie,et al. Review of measurement methods for area surface roughness[J]. Optics and Precision Engineering,2019,27:78-93. [13] International Organization for Standardization. ISO 25178-2:2012 Geometrical product specifications (GPS)-Surface texture:Areal - Part 2:Terms,definitions and surface texture parameters[S]. Switzerland:International Organization for Standardization,2012. [14] International Organization for Standardization. ISO 25178-3:2012 Geometrical product specifications (GPS)-Surface texture:Areal - Part 3:Specification operators[S]. Switzerland:International Organization for Standardization,2012. [15] WHITEHOUSE D J. Handbook of surface and nanometrology[M]. Boca Raton:CRC press,2010. [16] HU S,BRUNETIERE N,HUANG W,et al. Continuous separating method for characterizing and reconstructing bi-Gaussian stratified surfaces[J]. Tribology International,2016,102:454-462. [17] CAMPBELL J C. Cylinder bore surface roughness in internal combustion engines:Its appreciation and control[J]. Wear,1972,19(2):163-168. [18] PAWLUS P. A study on the functional properties of honed cylinders surface during running-in[J]. Wear,1994,176(2):247-254. [19] GRABON W,PAWLUS P,SEP J. Tribological characteristics of one-process and two-process cylinder liner honed surfaces under reciprocating sliding conditions[J]. Tribology International,2010,43(10):1882-1892. [20] ANDERBERG C,PAWLUS P,ROSÉN B G,et al. Alternative descriptions of roughness for cylinder liner production[J]. Journal of Materials Processing Technology,2009,209(4):1936-1942. [21] SAYLES R S,THOMAS T R. Surface topography as a nonstationary random process[J]. Nature,1978,271(5644):431-434. [22] 葛世荣,TONDER K. 粗糙表面的分形特征与分形表达研究[J]. 摩擦学学报,1997,17(1):74-81. GE Shirong,TONDER K. The fractal behavior and fractal characterization of rough surfaces[J]. Tribology,1997,17(1):74-81. [23] 葛世荣,索双富. 表面轮廓分形维数计算方法的研究[J]. 摩擦学学报,1997,17(4):66-74. GE Shirong,SUO Shuangfu. The computation methods for the fractal dimension of surface profiles[J]. Tribology,1997,17(4):66-74. [24] WOLF G W. Scale independent surface characterisation:Geography meets precision surface metrology[J]. Precision Engineering,2017,49:456-480. [25] BARTKOWIAK T,MENDAK M,MROZEK K,et al. Analysis of surface microgeometry created by electric discharge machining[J]. Materials,2020,13(17):3830. [26] BARRÉ F,LOPEZ J. Watershed lines and catchment basins:a new 3D-motif method[J]. International Journal of Machine Tools and Manufacture,2000,40(8):1171-1184. [27] JEULIN D,LAURENGE P. Probabilistic model of rough surfaces obtained by electro-erosion[M]//MARAGOS P,SCHAFER R W,BUTT M A. Mathematical morphology and its applications to image and signal processing. Boston,MA; Springer US. 1996:289-296. [28] JEULIN D,LAURENGE P. Simulation of rough surfaces by morphological random functions[J]. Journal of Electronic Imaging,1997,6(1):16-30. [29] SUTYAGIN O V,BOLOTOV A N,RACHISHKIN A A. Computer simulation of rough-surface microtopography[J]. Journal of Friction and Wear,2015,36(5):409-416. [30] WEN Y Q,TANG J Y,ZHOU W,et al. A reconstruction and contact analysis method of three-dimensional rough surface based on ellipsoidal asperity[J]. Journal of Tribology-Transactions of the ASME,2020,142(4):041502. [31] ZHOU W,TANG J,HUANG Z. A new method for rough surface profile simulation based on peak-valley mapping[J]. Tribology Transactions,2015,58(6):971-979. [32] NAYAK P R. Random process model of rough surfaces[J]. Journal of Lubrication Technology,1971,93(3):398-407. [33] DAVIES N,SPEDDING T,WATSON W. Autoregressive moving average processes with nonnormal residuals[J]. Journal of Time Series Analysis,1980,1(2):103-109. [34] WATSON W,KING T G,SPEDDING T A,et al. Machined surface - Time-series modeling[J]. Wear,1979,57(1):195-205. [35] WATSON W,SPEDDING T A. The time-series modeling of non-gaussian engineering processes[J]. Wear,1982,83(2):215-231. [36] WHITEHOUSE D J. The generation of two dimensional random surfaces having a specified function[J]. CIRP Annals - Manufacturing Technology,1983,32(1):495-498. [37] GU X,HUANG Y. The modelling and simulation of a rough surface[J]. Wear,1990,137(2):275-285. [38] YOU S J,EHMANN K F. Computer synthesis of three-dimensional surfaces[J]. Wear,1991,145(1):29-42. [39] UCHIDATE M,SHIMIZU T,IWABUCHI A,et al. Generation of reference data of 3D surface texture using the non-causal 2D AR model[J]. Wear,2004,257(12):1288-1295. [40] UCHIDATE M,YANAGI K,YOSHIDA I,et al. Generation of 3D random topography datasets with periodic boundaries for surface metrology algorithms and measurement standards[J]. Wear,2011,271(3-4):565-570. [41] PATIR N. Numerical procedure for random generation of rough surfaces[J]. Wear,1978,47(2):263-277. [42] PEKLENIK J. Paper 24:New developments in surface characterization and measurements by means of random process analysis[J]. Proceedings of the Institution of Mechanical Engineers,Conference Proceedings,1967,182(11):108-126. [43] HU Y Z,TONDER K. Simulation of 3-d random rough-surface by 2-d digital-filter and Fourier-analysis[J]. International Journal of Machine Tools & Manufacture,1992,32(1-2):83-90. [44] JOHNSON N L. Systems of frequency curves generated by methods of translation[J]. Biometrika,1949,36(1-2):149-176. [45] HILL I D,HILL R,HOLDER R L. Fitting Johnson curves by moments [J]. Applied Statistics,1976,25(2):180-184. [46] 陈辉,胡元中,王慧,等. 粗糙表面计算机模拟[J]. 润滑与密封,2006,31(10):52-55. CHEN Hui,HU Yuanzhong,WANG Hui,et al. Computer simulation of rough surfaces[J]. Lubrication Engineering,2006,31(10):52-55. [47] 陈海波,陈辉,胡元中,等. 数字滤波法模拟粗糙表面的误差分析[J]. 润滑与密封,2007,32(9):52-55. CHEN Haibo,CHEN Hui,HU Yuanzhong,et al. Error analysis in simulating rough surfaces using digital filter method[J]. Lubrication Engineering,2007,32(9):52-55. [48] 陈辉,陈海波,胡元中,等. 三维粗糙表面的计算机生成及其纹理控制[J]. 润滑与密封,2007,32(8):42-45. CHEN Hui,CHEN Haibo,HU Yuanzhong,et al. The generation of three dimensional rough surface and the control of texture feature[J]. Lubrication Engineering,2007,32(8):42-45. [49] 张生光,王文中. 基于快速傅里叶变换的三维非高斯粗糙表面数值仿真[J]. 中国科技论文,2014,9(8):908-910. ZHANG Shengguang,WANG Wenzhong. Numerical simulation of three-dimensional non-Gaussian rough surfaces based on FFT[J]. China Science Paper,2014,9(8):908-910. [50] BAKOLAS V. Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces[J]. Wear,2003,254(5-6):546-554. [51] 炊明伟,冯有前,李培林,等. 采用非线性梯度共轭法的粗糙表面数字化模拟[J]. 吉林大学学报,2014,44(1):241-245. CHUI Mingwei,FENG Youqian,LI Peilin,et al. Numerical simulation of rough surfaces with non-linear conjugate gradient method[J]. Journal of Jilin University,2014,44(1):241-245. [52] LIAO D,SHAO W,TANG J,et al. An improved rough surface modeling method based on linear transformation technique[J]. Tribology International,2018,119:786-794. [53] LIAO D,SHAO W,TANG J,et al. Numerical generation of grinding wheel surfaces based on time series method[J]. The International Journal of Advanced Manufacturing Technology,2018,94(1):561-569. [54] MINET C,BRUNETIERE N,TOURNERIE B,et al. Analysis and modeling of the topography of mechanical seal faces[J]. Tribology Transactions,2010,53(6):799-815. [55] MANESH K K,RAMAMOORTHY B,SINGAPERUMAL M. Numerical generation of anisotropic 3D non-Gaussian engineering surfaces with specified 3D surface roughness parameters[J]. Wear,2010,268(11-12):1371-1379. [56] FRANCISCO A,BRUNETIERE N. A hybrid method for fast and efficient rough surface generation[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2015,230(7):747-768. [57] NEWLAND D E. An introduction to random vibrations,spectral & wavelet analysis[M]. New York:Courier Corporation,1993. [58] WU J J. Simulation of rough surfaces with FFT[J]. Tribology International,2000,33(1):47-58. [59] SHINOZUKA M,DEODATIS G. Simulation of stochastic processes by spectral representation[J]. Applied Mechanics Reviews,1991,44(4):191-204. [60] WU J J. Simulation of non-Gaussian surfaces with FFT[J]. Tribology International,2004,37(4):339-346. [61] YANG G Q,LI B T,WANG Y,et al. Numerical simulation of 3d rough surfaces and analysis of interfacial contact characteristics[J]. CMES-Computer Modeling in Engineering & Sciences,2014,103(4):251-279. [62] WANG Y,LIU Y,ZHANG G,et al. A simulation method for non-gaussian rough surfaces using fast Fourier transform and translation process theory[J]. Journal of Tribology-Transactions of the ASME,2018,140(2):021403. [63] SHIELDS M D,DEODATIS G,BOCCHINI P. A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process[J]. Probabilistic Engineering Mechanics,2011,26(4):511-519. [64] GARCIA N,STOLL E. Monte Carlo calculation for electromagnetic-wave scattering from random rough surfaces[J]. Physical Review Letters,1984,52(20):1798-1801. [65] WANG T J,WANG L Q,ZHENG D Z,et al. Numerical simulation method of rough surfaces based on random switching system[J]. Journal of Tribology-Transactions of the ASME,2015,137(2):021403. [66] PÉREZ-RÀFOLS F,ALMQVIST A. Generating randomly rough surfaces with given height probability distribution and power spectrum[J]. Tribology International,2019,131:591-604. [67] SCHREIBER T,SCHMITZ A. Improved surrogate data for nonlinearity tests[J]. Physical Review Letters,1996,77(4):635-638. [68] PENG W,BHUSHAN B. Modelling of surfaces with a bimodal roughness distribution[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2000,214(5):459-470. [69] PAWLUS P. Simulation of stratified surface topographies[J]. Wear,2008,264(5-6):457-463. [70] REIZER R,PAWLUS P,GALDA L,et al. Modeling of worn surface topography formed in a low wear process[J]. Wear,2012,278-279:94-100. [71] REIZER R,PAWLUS P. Modelling of plateau honed cylinder surface topography[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2012,226(9):1564-1578. [72] HU S,BRUNETIERE N,HUANG W,et al. Bi-Gaussian surface identification and reconstruction with revised autocorrelation functions[J]. Tribology International,2017,110:185-194. [73] HU S,HUANG W,BRUNETIERE N,et al. Truncated separation method for characterizing and reconstructing bi-Gaussian stratified surfaces[J]. Friction,2017,5(1):32-44. [74] HU S,HUANG W,SHI X,et al. Multi-Gaussian stratified modeling and characterization of multi-process surfaces[J]. Tribology Letters,2018,66(3):117. [75] MANDELBROT B B. The fractal geometry of nature[M]. New York:W. H. Freeman,1983. [76] GAGNEPAIN J J,ROQUES-CARMES C. Fractal approach to two-dimensional and three-dimensional surface roughness[J]. Wear,1986,109(1):119-126. [77] LING F F. The possible role of fractal geometry in tribology[J]. Tribology Transactions,1989,32(4):497-505. [78] VOSS R.F. Random Fractal Forgeries[M]// Earnshaw R.A. (eds) Fundamental Algorithms for Computer Graphics. NATO ASI Series (Series F:Computer and Systems Sciences),vol 17. Berlin,Heidelberg:Springer,1985. [79] VOSS R F. Fractals in nature:From characterization to simulation[M]// PEITGEN H-O,SAUPE D. The Science of Fractal Images. New York,NY:Springer New York. 1988:21-70. [80] SAUPE D. Algorithms for random fractals [M]//PEITGEN H-O,SAUPE D. The Science of Fractal Images. New York,NY; Springer New York. 1988:71-136. [81] MAJUMDAR A,BHUSHAN B. Role of fractal geometry in roughness characterization and contact mechanics of surfaces[J]. Journal of Tribology-Transactions of the ASME,1990,112(2):205-216. [82] MAJUMDAR A,TIEN C L. Fractal characterization and simulation of rough surfaces[J]. Wear,1990,136(2):313-327. [83] MAJUMDAR A,TIEN C L. Fractal network model for contact conductance[J]. Journal of Heat Transfer,1991,113(3):516-525. [84] GANTI S,BHUSHAN B. Generalized fractal analysis and its applications to engineering surfaces[J]. Wear,1995,180(1):17-34. [85] PATRIKAR R M. Modeling and simulation of surface roughness[J]. Applied Surface Science,2004,228(1-4):213-220. [86] CAI Z J,CHEN D Q,LU S. Reconstruction of a fractal rough surface[J]. Physica D-Nonlinear Phenomena,2006,213(1):25-30. [87] WANG J,WU C B,LIU C S,et al. Fractal simulation on random rough surface[C]// Institute of Natural Science and Advanced Technology. Proceedings of the 2015 International Conference on Automation,Mechanical Control and Computational Engineering,April 24-26,2015,Zhengzhou:Atlantis Press,2015:1069-1073. [88] 陈辉,胡元中,王慧,等. 粗糙表面分形特征的模拟及其表征[J]. 机械工程学报,2006,42(9):219-223. CHEN Hui,HU Yuanzhong,WANG Hui,et al. Simulation and characterization of fractal rough surfaces[J]. Chinese Journal of Mechanical Engineering,2006,42(9):219-223. [89] ZOU M,YU B,FENG Y,et al. A Monte Carlo method for simulating fractal surfaces[J]. Physica A:Statistical Mechanics and its Applications,2007,386(1):176-186. [90] ODEN P I,MAJUMDAR A,BHUSHAN B,et al. AFM imaging,roughness analysis and contact mechanics of magnetic tape and head surfaces[J]. Journal of Tribology-Transactions of the ASME,1992,114(4):666-674. [91] WU J J. Characterization of fractal surfaces[J]. Wear,2000,239(1):36-47. [92] BORRI C,PAGGI M. Topology simulation and contact mechanics of bifractal rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers Part J-Journal of Engineering Tribology,2016,230(11):1345-1358. [93] GREENWOOD. J A,WILLIAMSON. J B. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1966,295(1442):300-319. [94] CHANG W R,ETSION I,BOGY D B. An elastic-plastic model for the contact of rough surfaces[J]. Journal of Tribology-Transactions of the ASME,1987,109(2):257-263. [95] SISTA B,VEMAGANTI K. Estimation of statistical parameters of rough surfaces suitable for developing micro-asperity friction models[J]. Wear,2014,316(1-2):6-18. [96] PRAJAPATI D K,TIWARI M. Topography analysis of random anisotropic gaussian rough surfaces[J]. Journal of Tribology-Transactions of the ASME,2017,139(4):041402. [97] PAWAR G,PAWLUS P,ETSION I,et al. The effect of determining topography parameters on analyzing elastic contact between isotropic rough surfaces[J]. Journal of Tribology-Transactions of the ASME,2013,135(1):011401. [98] PAWLUS P,ZELASKO W,REIZER R,et al. Calculation of plasticity index of two-process surfaces[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2017,231(5):572-582. [99] HU S,BRUNETIERE N,HUANG W,et al. Stratified revised asperity contact model for worn surfaces[J]. Journal of Tribology-Transactions of the ASME,2017,139(2):021403. [100] TIAN X,BHUSHAN B. A numerical three-dimensional model for the contact of rough surfaces by variational principle[J]. Journal of Tribology-Transactions of the ASME,1996,118(1):33-42. [101] JU Y,FARRIS T N. Spectral analysis of two-dimensional contact problems[J]. Journal of Tribology-Transactions of the ASME,1996,118(2):320-328. [102] STANLEY H M,KATO T. An FFT-based method for rough surface contact[J]. Journal of Tribology- Transactions of the ASME,1997,119(3):481-485. [103] REY V,KRUMSCHEID S,NOBILE F. Quantifying uncertainties in contact mechanics of rough surfaces using the multilevel Monte Carlo method[J]. International Journal of Engineering Science,2019,138:50-64. [104] MEGALINGAM A,MAYURAM M. Effect of surface parameters on finite element method based deterministic Gaussian rough surface contact model[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2014,228(12):1358-1373. [105] BELHADJAMOR M,BELGHITH S,MEZLINI S,et al. Numerical study of normal contact stiffness:non-Gaussian roughness and elastic–plastic behavior[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2020,234(9):1368-1380. [106] MU X,SUN Q,XU J,et al. Feasibility analysis of the replacement of the actual machining surface by a 3D numerical simulation rough surface[J]. International Journal of Mechanical Sciences,2019,150:135-144. [107] MAJUMDAR A,BHUSHAN B. Fractal model of elastic-plastic contact between rough surfaces[J]. Journal of Tribology-Transactions of the ASME,1991,113(1):1-11. [108] BHUSHAN B,MAJUMDAR A. Elastic-plastic contact model for bifractal surfaces[J]. Wear,1992,153(1):53-64. [109] MIAO X,HUANG X. A complete contact model of a fractal rough surface[J]. Wear,2014,309(1-2):146-151. [110] PERSSON B N J,ALBOHR O,TARTAGLINO U,et al. On the nature of surface roughness with application to contact mechanics,sealing,rubber friction and adhesion[J]. Journal of Physics:Condensed Matter,2004,17(1):R1-R62. [111] MÜSER M H,DAPP W B,BUGNICOURT R,et al. Meeting the contact-mechanics challenge[J]. Tribology Letters,2017,65(4):118. [112] PAPANGELO A,HOFFMANN N,CIAVARELLA M. Load-separation curves for the contact of self-affine rough surfaces[J]. Scientific Reports,2017,7(1):6900. [113] VAKIS A I,YASTREBOV V A,SCHEIBERT J,et al. Modeling and simulation in tribology across scales:An overview[J]. Tribology International,2018,125:169-199. [114] CIAVARELLA M,DEMELIO G,BARBER J,et al. Linear elastic contact of the Weierstrass profile[J]. Proceedings of the Royal Society of London Series A:Mathematical,Physical and Engineering Sciences,2000,456(1994):387-405. [115] MORAG Y,ETSION I. Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces[J]. Wear,2007,262(5):624-629. [116] PEI L,HYUN S,MOLINARI J F,et al. Finite element modeling of elasto-plastic contact between rough surfaces[J]. Journal of the Mechanics and Physics of Solids,2005,53(11):2385-2409. [117] HANAOR D H,GAN Y,EINAV I. Contact mechanics of fractal surfaces by spline assisted discretisation[J]. International Journal of Solids and Structures,2015,59:121-131. [118] PÉREZ-RÀFOLS F,ALMQVIST A. On the stiffness of surfaces with non-Gaussian height distribution[J]. Scientific Reports,2021,11(1):1863. [119] PENNESTRÌ E,ROSSI V,SALVINI P,et al. Review and comparison of dry friction force models[J]. Nonlinear Dynamics,2016,83(4):1785-1801. [120] PATIR N,CHENG H S. Average flow model for determining effects of 3-dimensional roughness on partial hydrodynamic lubrication[J]. Journal of Lubrication Technology-Transactions of the ASME,1978,100(1):12-17. [121] PATIR N,CHENG H S. Application of average flow model to lubrication between rough sliding surfaces [J]. Journal of Lubrication Technology-Transactions of the ASME,1979,101(2):220-230. [122] PATIR N,CHENG H S. Effect of surface roughness orientation on the central film thickness in EHD contacts[C]// DOWSON D,TAYLOR C M,Godet M,et al. Proc. 5th Leeds-Lyon Symposium on Tribology. London:Inst. Mech. Engrs. Publ.,1979:15-21. [123] ZHU D,CHENG H S. Effect of surface-roughness on the point contact EHL[J]. Journal of Tribology- Transactions of the ASME,1988,110(1):32-37. [124] WANG Y,LIU Y,WANG Z,et al. Surface roughness characteristics effects on fluid load capability of tilt pad thrust bearings with water lubrication[J]. Friction,2017,5(4):392-401. [125] MINET C,BRUNETIERE N,TOURNERIE B. A deterministic mixed lubrication model for mechanical seals[J]. Journal of Tribology-Transactions of the ASME,2011,133(4):042203: [126] WANG W Z,CHEN H,HU Y Z,et al. Effect of surface roughness parameters on mixed lubrication characteristics[J]. Tribology International,2006,39(6):522-527. [127] YAN X L,WANG X L,ZHANG Y Y. Influence of roughness parameters skewness and kurtosis on fatigue life under mixed elastohydrodynamic lubrication point contacts[J]. Journal of Tribology-Transactions of the ASME,2014,136(3):031503. [128] SHI X J,WANG L Q,QIN F Q. Non-Gaussian surface parameters effects on micro-TEHL performance and surface stress of aero-engine main-shaft ball bearing[J]. Tribology International,2016,96:163-172. [129] WANG Y,DORGHAM A,LIU Y,et al. Towards optimum additive performance:A numerical study to understand the influence of roughness parameters on the zinc dialkyldithiophosphates tribofilm growth[J]. Lubrication Science,2020,33(1):1-14. [130] ZHANG X,XU Y,JACKSON R L. A mixed lubrication analysis of a thrust bearing with fractal rough surfaces[J]. Proceedings of the Institution of Mechanical Engineers,Part J:Journal of Engineering Tribology,2019,234(4):608-621. [131] PEI X,PU W,ZHANG Y,et al. Surface topography and friction coefficient evolution during sliding wear in a mixed lubricated rolling-sliding contact[J]. Tribology International,2019,137:303-312. [132] LIU D,WANG S,ZHANG C. A multiscale wear simulation method for rotary lip seal under mixed lubricating conditions[J]. Tribology International,2018,121:190-203. [133] REICHERT S,LORENTZ B,HELDMAIER S,et al. Wear simulation in non-lubricated and mixed lubricated contacts taking into account the microscale roughness[J]. Tribology International,2016,100:272-279. [134] GHANBARZADEH A,PARSAEIAN P,MORINA A,et al. A semi-deterministic wear model considering the effect of zinc dialkyl dithiophosphate tribofilm[J]. Tribology Letters,2015,61(1):12. |
[1] | 余海燕, 贺宏伟, 邢萍. 考虑不同刚度退化模式的碳纤维增强复合材料失效模型开发[J]. 机械工程学报, 2024, 60(2): 197-208. |
[2] | 丁贤旺, 杨冰, 戎有鑫, 肖守讷, 阳光武, 朱涛. 基于W-M分形函数的轮轨滑动接触热响应分析[J]. 机械工程学报, 2023, 59(21): 356-366. |
[3] | 石嵩, 刘检华, 巩浩, 邵楠. 考虑粗糙表面接触配合的航空发动机多级转子装配误差传递建模[J]. 机械工程学报, 2023, 59(17): 208-219. |
[4] | 周炜, 赵岱岩, 唐进元. 一种基于峰谷数据映射的粗糙度轮廓重构方法[J]. 机械工程学报, 2023, 59(17): 268-278. |
[5] | 邓云飞, 吴华鹏, 杨笑岳, 王轩. 基于不同断裂准则的6061-T651铝合金板抗冲击性能数值仿真研究[J]. 机械工程学报, 2023, 59(14): 138-150. |
[6] | 王祺德, 刘达新, 刘振宇, 谭建荣. 基于复合泄漏通道模型的O型圈密封泄漏率计算方法研究[J]. 机械工程学报, 2023, 59(11): 232-241. |
[7] | 李红刚, 张超, 曹俊超, 周典, 张美合. 锂离子电池碰撞安全仿真方法的研究进展与展望[J]. 机械工程学报, 2022, 58(24): 121-144. |
[8] | 李浩, 程嘉辉, 孙春亚, 李客, 谢贵重, 王昊琪, 黄荣杰, 郝兵, 刘俊, 王新昌. 基于CFD-DPM的大规模颗粒-流体系统数值仿真与分析[J]. 机械工程学报, 2022, 58(22): 450-461. |
[9] | 谷小军, 周炳楠, 王文龙, 杨建楠, 朱继宏, 张卫红. 形状记忆合金驱动的可变翼梢小翼设计与验证[J]. 机械工程学报, 2022, 58(17): 49-57. |
[10] | 朱林, 邱建春, 陈敏. 基于修正Sobol灵敏度模型的拨穗授粉机疲劳寿命影响因素分析研究[J]. 机械工程学报, 2022, 58(16): 189-196. |
[11] | 章永年, 陶亚满, 蒋书运, 朱松青, 郑恩来, 史金飞. 含角接触球轴承和粗糙间隙表面滑动轴承关节的平面柔性多连杆机构动态误差分析与优化设计[J]. 机械工程学报, 2022, 58(1): 69-87. |
[12] | 吴正海, 徐颖强, 刘楷安, 陈智勇. 脂润滑点接触副混合润滑模型研究[J]. 机械工程学报, 2022, 58(1): 145-153. |
[13] | 刘检华, 张飞凯, 丁晓宇. 弹塑性粗糙表面实际接触面积演变规律研究[J]. 机械工程学报, 2021, 57(7): 109-116. |
[14] | 何玉辉, 胡航, 唐进元, 周炜. 齿根三维粗糙表面的应力集中系数计算研究[J]. 机械工程学报, 2021, 57(21): 182-188. |
[15] | 许世杰, 关庆华, 张雄飞, 赵长雨, 温泽峰, 陆文教. 地铁车辆车轮踏面双光带形成机理分析[J]. 机械工程学报, 2021, 57(18): 240-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||