[1] 万忠民,陈敏,刘伟,等.基于多孔微热沉的大功率LED冷却技术研究[J].机械工程学报,2010,46(8):109-113. WAN Zhongmin,CHEN Min,LIU Wei,et al. Research on porous micro heat sink for thermal management of high power LED[J]. Journal of Mechanical Engineering,2010,46(8):109-113. [2] ARSHAD A,ALI H M,ALI M,et al. Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices:Effect of pin thickness and PCM volume fraction[J]. Applied Thermal Engineering,2017,112:143-155. [3] PAN M,LAI W. Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery[J]. Renewable Energy,2017,114:408-422. [4] 王雅博,诸凯,崔卓,等.冷却水进出方式对芯片散热器换热性能影响[J].机械工程学报,2018,54(10):188-194. WANG Yabo,ZHU Kai,CUI Zhuo,et al. Influence of the location of the inlet and outlet on the chip heat sink[J]. Journal of Mechanical Engineering,2018,54(10):188-194. [5] TANG H,TANG Y,WAN Z,et al. Review of applications and developments of ultra-thin micro heat pipes for electronic cooling[J]. Applied Energy,2018,223:383-400. [6] VASILIEV L L. Heat pipes in modern heat exchangers[J]. Applied Thermal Engineering,2005,25(1):1-19. [7] 汤勇,唐恒,万珍平,等.超薄微热管的研究现状及发展趋势[J].机械工程学报,2017,53(20):144-157. TANG Yong,TANG Heng,WAN Zhenping,et al. Development status and perspective trend of ultra-thin micro heat pipe[J]. Journal of Mechanical Engineering,2017,53(20):144-157. [8] SINGH R,AKBARZADEH A,DIXON C,et al. Miniature loop heat pipe with flat evaporator for cooling computer CPU[J]. IEEE Transactions on Components and Packaging Technologies,2007,30(1):42-49. [9] MOHAMMAD S A,YUJI S,KOICHI M,et al. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices[J]. Heat&Mass Transfer,2017,53(1):1-7. [10] TANG Y,DING X,YU B,et al. A high power LED device with chips directly mounted on heat pipes[J]. Applied Thermal Engineering,2014,66(1-2):632-639. [11] 汤勇,孙亚隆,郭志军,等.电机散热系统的研究现状与发展趋势[J].中国机械工程,2021,32(10):1135-1150. TANG Yong,SUN Yalong,GUO Zhijun,et al. Development status and perspective trend of motor cooling systems[J]. China Mechanical Engineering,2021,32(10):1135-1150. [12] 陶鹏,常超,郭怀新,等.柔性热管的研究进展与展望[J].中国材料进展,2018,37(12):1025-1047. TAO Peng,CHANG Chao,GUO Huaixin,et al. Research progress and outlook of flexible heat pipe[J]. Materials China,2018,52(1-2):301-308. [13] 崔丽萍,米珉,苗建印,等.柔性热管的传热试验研究与分析[C]//全国热管会议,2008-9-11,威海,中国.北京:中国工程热物理学会,2008:293-298. CUI Liping,MI Min,MIAO Jianyin,et al. Experimental study and analysis on heat transfer of flexible heat pipes[C]//Chinese Heat Pipe Conference,September 11,2008,Weihai,China. Beijing:Chinese Society of Engineering Thermophysics,2008:293-298. [14] OSHMAN C,LI Q,LIEW L A,et al. Flat flexible polymer heat pipes[J]. Journal of Micromechanics and Microengineering,2013,23(1):015001. [15] LI J,LÜ L,ZHOU G,LI X. Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips[J]. Energy Conversion and Management,2019,201:112202. [16] CHEN Z,LI Y,ZHOU W,et al. Design,fabrication and thermal performance of a novel ultra-thin vapour chamber for cooling electronic devices[J]. Energy Conversion and Management,2019,187:221-231. [17] CHEN G,TANG Y,WAN Z P,et al. Heat transfer characteristic of an ultra-thin flat plate heat pipe with surface functional wicks for cooling electronics[J]. International Communications in Heat and Mass Transfer,2019,100:12-19. [18] 郭浩,纪献兵,徐进良.颗粒形貌及表面润湿性对毛细芯及环路热管性能的影响[J].机械工程学报,2020,56(14):173-179. GUO Hao,JI Xianbing,XU Jinliang. Effect of particle morphology and surface wettability on performance of porous wick and loop heat pipe[J]. Journal of Mechanical Engineering,2020,56(14):173-179. [19] 陈芬.柔宇2018全球新品发布会-可折叠屏手机柔派面世[J].中国经济信息,2018,22:10. CHEN Fen. Royole 2018 global new product release conference-Flexible mobile phone with foldable screen[J]. China Economic Information,2018,22:10. [20] FRANKLIN J C,MYERS S A,RAPPOPORT B M,et al. Flexible electronic devices:US,US8929085B2[P]. 2015-01-06. [21] KO J H,KIM J H. Electronic device including flexible display element:US,US9983629B2[P]. 2018-05-29. [22] 胡凯,朱光泽,韩萍,等.一种具有柔性屏幕的电子设备的显示方法及电子设备:中国,201910108021.8[P]. 2019-02-02. HU Kai,ZHU Guangze,HAN Ping,et al. An electronic device and a display method for electronic devices with flexible screens:China,201910108021.8[P]. 2019-02-02. [23] WANG L J. Electronic device and flexible connecting device:US,US9921611B2[P]. 2018-03-20. [24] 唐恒.丝网吸液芯超薄热管制造及其传热性能研究[D].广州:华南理工大学,2018. TANG Heng. Study on fabrication and heat transfer performance of ultra-thin heat pipe with copper mesh wick[D]. Guangzhou:South China University of Technology,2018. [25] 陈杰凌.基于多孔吸液芯的超薄铝平板热管的制造及其传热性能研究[D].广州:华南理工大学,2018. CHEN Jieling. Fabrication and heat transfer performance of ultra-thin aluminum flat heat pipes based on porous wick[D]. Guangzhou:South China University of Technology,2018. [26] CHEN G,TANG Y,et al. Thermal performance enhancement of micro-grooved aluminum flat plate heat pipes applied in solar collectors[J]. Renewable Energy,2020,146:2234-2242. [27] LEE D,BYON C. Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat&Mass Transfer,2018,122:306-314. [28] YASUMI S,YUICHI K,KENICHI N,et al. The ultra-thin sheet-shaped heat pipe 'PERA-FLEX'[C]//International Heat Pipe Conference,September 1,2004,Shanghai,China. Japan:The Furukawa Electric CO. LTD.,2004:250-255. [29] GERNERT N,SARRAF D,STEINBERG M. Flexible heat pipe cold plates for aircraft thermal control[J]. SAE Transactions,1991,100:2352-2360. [30] GLASS D E,STEVENS J C,Raman V V. Flexible heat pipes for a lightweight spacecraft radiator[J]. Journal of Spacecraft and Rockets,1999,36(5):711-718. [31] 张建成,袁竹林.柔性热管在天文望远镜焦面散热器上的应用研究[J].能源研究与利用,1995(2):22-24. ZHANG Jiancheng,YUAN Zhulin. The application of flexible heat pipe in the radiator of focal plane of astronomical telescope[J]. Energy Research&Utilization,1995(2):22-24. [32] AMBROSE J. Flex heat pipe East-West deployable radiator[J]. Microgravity Science and Technology,2019,31:311-316. [33] 代轩.柔性热管热特性的实验研究及理论分析[D].广州:华南理工大学,2020. DAI Xuan. Experimental exploration and theoretical analysis on the thermal characteristics of flexible heat pipes[D]. Guangzhou:South China University of Technology,2020. [34] JAIPURKAR T,KANT P,KHANDEKAR S,et al. Thermo-mechanical design and characterization of flexible heat pipes[J]. Applied Thermal Engineering,2017,126:1199-1208. [35] AMELI M,AGNEW B,LEUNG P S,et al. A novel method for manufacturing sintered aluminium heat pipes[J]. Applied Thermal Engineering,2013,52(2):498-504. [36] BABIN B R,PETERSON G P. Experimental investigation of a flexible bellows heat pipe for cooling discrete heat sources[J]. Journal of Heat Transfer,1990,112(3):602. [37] YANG C,CHANG C,SONG C,et al. Fabrication and performance evaluation of flexible heat pipes for potential thermal control of foldable electronics[J]. Applied Thermal Engineering,2015,95:445-453. [38] YANG C,SONG C Y,SHANG W,TAO P,DENG T. Flexible heat pipes with integrated bioinspired design[J]. Progress in Natural Science:Materials International,2015,25:51-57. [39] QU J,WANG C,LI X,et al. Heat transfer performance of flexible oscillating heat pipes for electric/hybrid-electric vehicle battery thermal management[J]. Applied Thermal Engineering,2018,135:1-9. [40] QU J,LI X,CUI Y,et al. Design and experimental study on a hybrid flexible oscillating heat pipe[J]. International Journal of Heat and Mass Transfer,2017,107:640-645. [41] HUANG J L,ZHOU W,XIANG J H,et al. Development of novel flexible heat pipe with multistage design inspired by structure of human spine[J]. Applied Thermal Engineering,2020,175:115392. [42] TANAKA K,ABE Y,NAKAGAWA M,et al. Low-gravity experiments of lightweight flexible heat pipe panels with self-rewetting fluids[J]. Annals of the New York Academy of Sciences,2009,1161(1):554-561. [43] LIEW L A,LIN C Y,LEWIS R,et al. Flexible thermal ground planes fabricated with printed circuit board technology[J]. Journal of Electronic Packaging,2017,139:0110031-01100310. [44] LEWIS R,XU S,LIEW L A,et al. Thin flexible thermal ground planes:Fabrication and scaling characterization[J]. Journal of Microelectromechanical Systems,2015,24(6):2040-2048. [45] OSHMAN C,SHI B,LI C,et al. The development of polymer based flat heat pipes[J]. Journal of Microelectromechanical Systems,2011,20(2):410-417. [46] OSHMAN C,LI Q,LIEW L A,et al. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration[J]. Journal of Micromechanics and Microengineering,2012,22(4):045018. [47] LIM J,KIM S J. Fabrication and experimental evaluation of a polymer-based flexible pulsating heat pipe[J]. Energy Conversion and Management,2018,156:358-364. [48] LEWIS R,LIEW L A,XU S,et al. Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin,2015,60(7):701-706. [49] HSIEH S S,YANG Y R. Design,fabrication and performance tests for a polymer-based flexible flat heat pipe[J]. Energy Conversion and Management,2013,70:10-19. [50] WANG X,ZHU Y,ZHU M,et al. Thermal analysis and optimization of an ice and snow melting system using geothermy by super-long flexible heat pipes[J]. Applied Thermal Engineering,2017,112:1353-1363. [51] 唐恒,汤勇,万珍平,等.平板铝热管微沟槽吸液芯的制备及毛细性能研究[J].机械工程学报,2019,55(6):186-193. TANG Heng,TANG Yong,WAN Zhenping,et al. Fabrication and capillary performance of micro-grooved wicks for aluminum flat-plate heat pipes[J]. Journal of Mechanical Engineering,2019,55(6):186-193. [52] LIU C,LI Q,FAN D. Fabrication and performance evaluation of flexible flat heat pipes for the thermal control of deployable structure[J]. International Journal of Heat and Mass Transfer,2019,144:118661. [53] WU S C,GU T W,WANG D,et al. Study of PTFE wick structure applied to loop heat pipe[J]. Applied Thermal Engineering,2015,81:51-57. [54] BOO J H,CHUNG W B. Experimental study on the thermal performance of a small-scale loop heat pipe with polypropylene wick[J]. Journal of Mechanical Science and Technology,2005,19(4):1052-1061. [55] MITOMI M,NAGANO H. Long-distance loop heat pipe for effective utilization of energy[J]. International Journal of Heat and Mass Transfer,2014,77:777-784. [56] NISHIKAWARA M,NAGANO H,KAYA T. Transient thermo-fluid modeling of loop heat pipes and experimental validation[J]. Journal of Thermophysics and Hear Transfer,2013,27(4):641-647. [57] KOBAYASHI T,OGUSHI T,HAGA S,et al. Heat transfer performance of a flexible looped heat pipe using R134a as a working fluid:Proposal for a method to predict the maximum heat transfer rate of FLHP[J]. Heat Transfer-asian Research,2003,32(4):306-318. [58] OGUSHI T,YAO A,XU J J,et al. Heat transport characteristics of flexible looped heat pipe under micro-gravity condition[J]. Heat Transfer-asian Research,2003,32(5):381-390. [59] NAGANO H,FUKUYOSHI F,OGAWA H,et al. Development of an Experimental Small Loop Heat Pipe with Polytetrafluoroethylene Wicks[J]. Journal of Thermophysics and Heat Transfer,2011,25(4):547-552. [60] 程丽丽,江玲.黄铜和不锈钢丝网电磁屏蔽效能的研究[J].电子质量,2006,9:72-74. CHENG Lili,JIANG Ling. Research of electromagnetic shielding effectiveness of brass and stainless steel wire-mesh screen[J]. Electronics Quality,2006,9:72-74. [61] LI Y,ZHOU W. Thermal performance of ultra-thin heat pipes with composites wick structure[J]. Applied Thermal Engineering,2016,102:487-499. [62] GUPTA N K,SEKHON G S,GUPTA P K. Study of lateral compression of round metallic tubes[J]. Thin-Walled Structures,2005,43(6):895-922. [63] BAYOUMI L S. Analysis of flow and stresses in flattening a circular tube by rolling[J]. Journal of Materials Processing Technology,2002,128(1):130-135. [64] ZHOU W,LI Y,et al. Ultra-thin flattened heat pipe with a novel band-shape spiral woven mesh wick for cooling smartphones[J]. International Journal of Heat and Mass Transfer,2020,146:118792. [65] 李春威.复合材料胶接技术的发展与应用[J].航空制造技术,2011,20:88-91. LI Chunwei. Development and application of composites adhesive bonding technology[J]. Aeronautical Manufacturing Technology,2011,20:88-91. [66] 周利,秦志伟,刘杉,等.热塑性树脂基复合材料连接技术的研究进展[J].材料导报,2019,33(19):3177-3183. ZHOU Li,QIN Zhiwei,LIU Shan,et al. Progress on joining technology of thermoplastic resin matrix composites[J]. Materials Reports,2019,33(19):3177-3183. [67] SUN C,MIN J,LIN J,et al. The effect of laser ablation treatment on the chemistry,morphology and bonding strength of CFRP joints[J]. International Journal of Adhesion and Adhesives,2018,84:325-334. [68] ZHAN X H,Li Y,Gao C Y,et al. Effect of infrared laser surface treatment on the microstructure and properties on adhesively CFRP bonded joints[J]. Optics and Laser Technology,2018,106:398-409. [69] TAO R,ALFANO M,LUBINEAU G. Laser-based surface patterning of composite plates for improved secondary adhesive bonding[J]. Composites Part A:Applied Science and Manufacturing,2018,109:84-94. [70] 唐清华,黄乃宁,张文良,等. Monel400波纹管焊接工艺的研究[J].焊接,2015(3):43-44. TANG Qinghua,HUANG Naining,ZHANG Wenliang,et al. Study on welding process of Monel400 bellows[J]. Welding&Joining,2015(3):43-44. [71] 陈荣发.波纹管与直管的连接结构:中国,201620569092. X[P]. 2016-11-16. CHEN Rongfa. Connection structure between bellows and straight pipes:China,201620569092. X[P]. 2016-11-16. [72] 王浩.一种直管与波纹管的转换连接装置:中国,201521082429.6[P]. 2016-05-18. WANG Hao. A conversion/connection device between straight pipes and bellows:China,201521082429. 6[P]. 2016-05-18. [73] HUI H,DING Y,SHI D,et al. 5G network-based Internet of things for demand response in smart grid:A survey on application potential[J]. Applied Energy,2020,257:113972. [74] FENG C,BAI L,BAO R,et al. Superior thermal interface materials for thermal management[J]. Composites Communications,2019,12:80-85. [75] ZHAO J,ZHAO R,HUO Y,et al. Effects of surface roughness,temperature and pressure on interface thermal resistance of thermal interface materials[J]. International Journal of Heat and Mass Transfer,2019,140:705-716. [76] JI Y,YAN H,XIAO X,et al. Excellent thermal performance of gallium-based liquid metal alloy as thermal interface material between aluminum substrates[J]. Applied Thermal Engineering,2020,166:114649. |