• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2018, Vol. 54 ›› Issue (18): 187-193.doi: 10.3901/JME.2018.18.187

• 可再生能源与工程热物理 • 上一篇    下一篇

扫码分享

矿用大功率辅助散热式磁力偶合器温度场

王雷1,2, 贾振元1, 朱玉芹2, 刘昊2, 张黎2   

  1. 1. 大连理工大学机械工程学院 大连 116023;
    2. 煤科集团沈阳研究院有限公司 抚顺 113122
  • 收稿日期:2017-01-06 修回日期:2018-03-14 出版日期:2018-09-20 发布日期:2018-09-20
  • 通讯作者: 贾振元(通信作者),男,1963年出生,博士,教授,博士研究生导师。主要研究方向为精密加工与特种加工、精密测量与控制、功能材料及其传感器与执行器数控技术。E-mail:jzyxy@dlut.edu.cn
  • 作者简介:王雷,男,1984年出生,博士研究生。主要研究方向为煤矿机电安全设备设计和研发。E-mail:wincoat@163.com
  • 基金资助:
    中国煤炭科工集团有限公司科技创新创业资金专项重点(2018ZD002)、中国煤炭科工集团有限公司科技创新项目面上(2014MS013)、辽宁省科学技术计划(2017220007)和辽宁省企业技术创新重点计划(大功率水汽型永磁智能调速传动技术及装备)资助项目。

Temperature Field of Mining Assisted Cooling High-power Magnetic Couplings

WANG Lei1,2, JIA Zhenyuan1, ZHU Yuqin2, LIU Hao2, ZHANG Li2   

  1. 1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116023;
    2. China Coal Technology Engineering Group Shenyang Research Institute, Fushun 113122
  • Received:2017-01-06 Revised:2018-03-14 Online:2018-09-20 Published:2018-09-20

摘要: 矿用磁力偶合器具有效率高、传递可靠等优点,广泛应用于煤机装备传动领域。但偶合器关键部件耐热性能差,影响偶合器寿命,对其进行温度场研究十分必要。针对研究较少的区别于框架式磁力偶合器的矿用封闭式大功率磁力偶合器温度场散热系数计算难的问题,提出一种区别于传统转速代入经验公式计算散热系数的方法,即基于流固耦合速度场计算散热系数进而分析偶合器温度场的方法,并进行三维温度场数值模拟,得到偶合器温度场分布,可适用于不同偶合器散热表面。并以160 kW偶合器为例进行试验验证,深入分析了偶合器表面不同位置、不同输入扭矩下偶合器温度变化规律:随时间进行,温度呈先增加后稳定趋势,稳定时即达到热平衡状态;输入扭矩增大时,温升加快,稳定温度也相应升高;扭矩值每增加10 N·m,最终稳定温度增加15℃左右。最终,通过数值模拟数据与试验数据对比分析,误差为2%~3%,验证了所提方法的正确性,对指导偶合器控制系统温度保护设计与散热结构优化具有重要意义。

关键词: 矿用磁力偶合器, 流固耦合, 三维温度场, 散热片

Abstract: The magnetic coupler has many advantages, such as high efficiency and reliable transmission. It is widely used in the field of coal machine equipment transmission. However, the heat resistance of the key components of the coupler is poor, which affects the life of the coupler. It is necessary to study the temperature field of the coupler. Specific to the few study on thermal fact of the mining assisted cooling high-power magnetic couplings, a new method, calculating the heat transfer coefficient based on the fluid-solid coupling velocity field, is proposed, which is different from the traditional method plugging rotating speed into the empirical formula. The numerical simulation of the three-dimensional temperature field is conducted, thus getting the temperature field distribution of the coupling which can be applicable to the heat transfer surface of different couplings. The 160 kW coupling is taken as an example for experimental verification, thus analyzing the temperature change law of the coupling at different positions and with different input torques. As time goes on, the temperature increases first and then stabilizes. When it is stable, it reaches the state of thermal equilibrium. When the input torque increases, the temperature rises and the stable temperature increases correspondingly. The torque increases at 10Nm, and the final stable temperature increases by 15 degrees. Finally, through the comparative analysis of the numerical simulation data and the experimental data, the error is 2%-3%. The correction of the proposed method is verified, which is of great importance for the temperature protection design and cooling structure optimization of the coupling control system.

Key words: cooling fin, fluid-solid coupling, mining magnetic coupling, three-dimensional temperature field

中图分类号: