[1] LIU N,LU Z,ZHAO J,et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[J]. Nature Nanotechnology,2014,9(3):187-192. [2] CHENG H,LI F. Charge delivery goes the distance[J]. Science,2017,356(6338):582-583. [3] SUN K,WEI T S,AHN B Y,et al. 3D printing of interdigitated li-ion microbattery architectures[J]. Advanced Materials,2013,25(33):4539-4543. [4] SUN H,ZHU J,BAUMANN D,et al. Hierarchical 3D electrodes for electrochemical energy storage[J]. Nature Reviews Materials,2019,4(1):45-60. [5] FANG R,ZHAO S,HOU P,et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials,2016,28(17):3374-3382. [6] LI Xiangming,SHAO Jinyou,KIM S K,et al. High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes[J]. Nature Communications,2018,9(1):2578-2578. [7] SINGH M,KAISER J,HAHN H,et al. Thick electrodes for high energy lithium ion batteries[J]. Journal of The Electrochemical Society,2015,162(7). [8] FRANÇOIS B,PRESSER V,BALDUCCI A,et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials,2014,26(14):2283-2283. [9] CHMIOLA J,YUSHIN G,GOGOTSI Y,et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science,2006,313(5794):1760-1763. [10] TIAN W,ZHU J,DONG Y,et al. Micelle-induced assembly of graphene quantum dots into conductive porous carbon for high rate supercapacitor electrodes at high mass loadings[J]. Carbon,2020:89-96. [11] QIAO Y,LIU Y,CHEN C,et al. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries[J]. Advanced Functional Materials,2018,28(51):1805899. [12] SUN H,MEI L,LIANG J,et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage[J]. Science,2017,356(6338):599-604. [13] GALLAGHER K G,TRASK S E,BAUER C,et al. Optimizing areal capacities through understanding the limitations of lithium-ion electrodes[J]. Journal of the Electrochemical Society,2016,163(2):A138-A149. [14] CHABI S,PENG C,HU D,et al. Ideal three-dimensional electrode structures for electrochemical energy storage[J]. Advanced Materials,2014,26(15):2440-2445. [15] SIMON P,GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7(11):845-854. [16] BURKE A. R&D considerations for the performance and application of electrochemical capacitors[J]. Electrochimica Acta,2007,53(3):1083-1091. [17] ZHANG L,ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531. [18] WANG G,ZHANG L,ZHANG J,et al. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41(2):797-828. [19] COME J,AUGUSTYN V,KIM J W,et al. Electrochemical kinetics of nanostructured Nb2O5 electrodes[J]. Journal of The Electrochemical Society,2014,161(5):A718-A725. [20] 王一博,赵九蓬. 3D打印低扭曲度超厚分级孔锂离子电池电极[J]. 现代化工,2017,37(12):118-122. WANG Yibo,ZHAO Jiupeng. 3D printing low distortion ultra thick graded pore lithium ion battery electrode[J]. Modern Chemical Industry,2017,37(12):118-122. [21] KUANG Y,CHEN C,KIRSCH D,et al. Thick electrode batteries:Principles,opportunities,and challenges[J]. Advanced Energy Materials,2019,9(33). [22] XU Y,CHEN C Y,ZHAO Z,et al. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors[J]. Nano Letters,2015,15(7):4605-4610. [23] 吴宇平. 锂离子电池:应用与实践[M]. 北京:化学工业出版社,2004. WU Yuping. Lithium ion battery:Application and Practice[M]. Beijing:Chemical Industry Press,2004. [24] ZHOU L,NING W,WU C,et al. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries[J]. Advanced Materials and Technologies,2019,4(2):1800402. [25] YU W,ZHOU H,LI B Q,et al. 3D printing of carbon nanotubes-based microsupercapacitors[J]. Acs Applied Materials & Interfaces,2017,9(5):4597-4604. [26] BONACCORSO F,COLOMBO L,YU G,et al. Graphene,related two-dimensional crystals,and hybrid systems for energy conversion and storage[J]. Science,2015,347(6217):1246501. [27] XU Y,LIN Z,ZHONG X,et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications,2014,5(1):25105994. [28] 汪洪溟,朱凌岳. 石墨烯在电化学储能领域应用的研究进展[J]. 化学工程师,2019(7):69-72. WANG Hongming,ZHU Lingyue. Application of graphene in electrochemical energy storage[J]. Chemical Engineer,2019(7):69-72. [29] KAMYSHNY A,MAGDASSI S. Conductive nanomaterials for 2D and 3D printed flexible electronics[J]. Chemical Society Reviews,2019,48(6):1712-1740. [30] 高云雷,赵东林,白利忠,等. 石墨烯用作锂离子电池负极材料的电化学性能[J]. 中国科技论文,2012(3):43-47+51. GAO Yunlei,ZHAO Donglin,BAI Lizhong,et al. Electrochemical properties of graphene as anode materials for lithium ion batteries[J]. China Sciencepaper,2012(3):43-47+51. [31] ZHU C,LIU T,QIAN F,et al. Supercapacitors based on 3D hierarchical graphene aerogels with periodic macropores[J]. Nano Letters,2016,16(6):3448-3456. [32] 徐国栋. 锂离子电池材料解析[M]. 北京:机械工业出版社,2018. XU Guodong. Analysis of lithium ion battery materials[M]. Beijing:China Machine Press,2018. [33] 何博,潘宇飞,陆敏. 石墨烯基储能材料的增材制造研究进展[J]. 材料导报,2017,31(13):126-130+137. HE Bo,PAN Yufei,LU Min. Research progress in additive manufacturing of graphene based energy storage materials[J]. Materials Review,2017,31(13):126-130+137. [34] LI J,XU J,XIE Z,et al. Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application[J]. Advanced Materials,2018:1800548. [35] NIU Z,LIU L,ZHANG L,et al. A universal strategy to prepare functional porous graphene hybrid architectures[J]. Advanced Materials,2014,26(22):3681-3687. [36] CESARANO J,SEGALMAN R,CALVERT P. Robocasting provides moldless fabrication from slurry deposition[J]. Ceram Ind.,1998,148(4):94-102 [37] KHALED S A,BURLEY J C,ALEXANDER M R,et al. Desktop 3D printing of controlled release pharmaceutical bilayer tablets[J]. International Journal of Pharmaceutics,2014,461(1):105-111. [38] LEWIS J A. Direct ink writing of 3D functional materials[J]. Advanced Functional Materials,2006,16(17):2193-2204. [39] LEWIS J A,GRATSON G M. Direct writing in three dimensions[J]. Materials Today,2004,7(7):32-39. [40] WEI M,ZHANG F,WANG W,et al. 3D direct writing fabrication of electrodes for electrochemical storage devices[J]. Journal of Power Sources,2017,354(JUN.30):134-147. [41] FU K,YAO Y,DAI J,et al. Progress in 3D printing of carbon materials for energy-related applications[J]. Advanced Materials,2017,29(9):1603486.1-1603486.20. [42] 王小锋,孙月花,彭超群,等. 直写成型用悬浮液的设计[J]. 无机材料学报,2015,30(11):1139-1147. WANG Xiaofeng,SUN Yuehua,PENG Chaoqun,et al. Design of suspension for direct writing[J]. Journal of Inorganic Materials,2015,30(11):1139-1147. [43] DUAN SS,YANG K,WANG Z,et al. Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/graphene network[J]. ACS Applied Materials & Interfaces,2016,8(3):2187-2192. [44] LIN S,ZHONG Y,ZHAO X,et al. Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization- lnspired process[J]. Advanced Materials,2018,30(34):1803004.1-1803004.10. [45] REYES C,SOMOGYI R,NIU S,et al. Three-dimensional printing of a complete lithium ion battery with fused filament fabrication[J]. ACS Applied Energy Materials,2018,1(10):5268-5279. [46] GARCIATUNON E,BARG S,FRANCO J,et al. Printing in three dimensions with graphene[J]. Advanced Materials,2015,27(10):1688-1693. [47] WEI Y,LI B Q,DING S J,et al. 3D printing of interdigitated electrode for all-solid-state microsupercapacitors[J]. Journal of Micromechanics and Microengineering,2018,28(10):105014-. [48] LI Yuanyuan,ZHU Hongli,WANG Yibo,et al. Cellulose-nanofiber-enabled 3D printing of a carbon- nanotube microfiber network[J]. Small Methods,2017,1(10):1700222. [49] 王一博,赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程,2018,46(3):13-21. WANG Yibo,ZHAO Jiupeng. 3D printing flexible wearable lithium ion battery[J]. Journal of Materials Engineering,2018,46(3):13-21 [50] LI H,LU C. Preparation and lithium storage performance of a carbon-coated Si/graphene nanocomposite[J]. Carbon,2015,81:851. [51] CHI K,ZHANG Z,XI J,et al. Freestanding graphene paper supported three-dimensional porous grapheme- polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor[J]. ACS Applied Materials & Interfaces,2014,6(18):16312-16319. [52] ZHANG Q,ZHANG F,MEDARAMETLA S P,et al. 3D printing of graphene aerogels[J]. Small,2016,12(13):1702-1708. [53] LIN Y,LIU F,CASANO G,et al. Pristine graphene aerogels by room-temperature freeze gelation[J]. Advanced Materials,2016,28(36):7993-8000. [54] BROWN E,YAN P,TEKIK H,et al. 3D printing of hybrid MoS2-graphene aerogels as highly porous electrode materials for sodium ion battery anodes[J]. Materials & Design,2019. [55] 肖崇梁. 用于三维锂离子电池的低温直写3D打印装备开发与工艺研究[D]. 深圳:深圳大学,2017. XIAO Chongliang. Development and process research of low temperature direct writing 3D printing equipment for 3D lithium ion battery[D]. Shenzhen:Shenzhen University,2017. [56] CHEN P Y,LIU M,WANG Z,et al. From flatland to spaceland:Higher dimensional patterning with two-dimensional materials[J]. Advanced Materials,2017,29(23):1605096.1-1605096.16. [57] BASU A,SAHA A,GOODMAN C J,et al. Catalytically initiated Gel-in-Gel printing of composite hydrogels[J]. ACS Applied Materials & Interfaces,2017,9(46):40898-40904. [58] FU K,WANG Y,YAN C,et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Advanced Materials,2016,28(13):2587-2594. [59] SEUNG H H. Thermal reduction of graphene oxide[M]. Rijeka:InTech,2010. [60] GAO T,ZHOU Z,YU J,et al. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities[J]. Advanced Energy Materials,2019,9(8):1802578.1-1802578.10. [61] ESTHER G,BARG S,FRANCO J,et al. Printing in three dimensions with graphene[J]. Advanced Materials,2015,27(10):1688-1693. [62] 杜敏,宋滇,谢玲,等. 静电纺丝在高效可逆离子电池储能中的应用[J]. 材料导报,2018,32(19):4-17. DU Min,SONG Dian,XIE Ling,et al. Application of electrospinning in energy storage of high efficiency reversible ion battery[J]. Materials Review,2018,32(19):4-17. [63] 施旗,雷永鹏,王应德,等. 氮掺杂石墨烯@碳纳米纤维的原位制备及其电催化氧还原性能[J]. 无机材料学报,2016,197(4):18-24. SHI Qi,LEI Yongpeng,WANG Yingde,et al. In situ preparation of nitrogen doped graphene@carbon nanofibers and their electrocatalytic oxygen reduction performance[J]. Journal of Inorganic Materials,2016,197(4):18-24. [64] SHAN C,WANG Y,XIE S,et al. Free-standing nitrogen-doped graphene-carbon nanofiber composite mats:electrospinning synthesis and application as anode material for lithium-ion batteries[J]. Journal of Chemical Technology & Biotechnology,2019,94(12):3793-3799. [65] WANG F,CAI J X,YU J,et al. Simultaneous electrospinning and electrospraying:Fabrication of a carbon nanofibre/mno/reduced graphene oxide thin film as a high-performance anode for lithium-ion batteries[J]. Chemelectrochem,2017,5(1):51-61. [66] 金婷,王晓君,焦丽芳. 静电纺丝技术在二次电池和电催化领域的应用进展[J]. 中国科学:化学,2019,49(5):40-51. JIN Ting,WANG Xiaojun,JIAO Lifang. Application progress of electrospinning technology in secondary batteries and electrocatalysis[J]. Chinese Science:Chemistry,2019,49(5):40-51. [67] LIU X,JIANG Y,LI K,et al. Electrospun free- standing N-doped C@SnO2 anode paper for flexible Li-ion batteries[J]. Materials Research Bulletin,2018,109:41-48. [68] 龚佑宁,黎德龙,张豫鹏,等. 石墨烯及其复合材料在锂离子电池负极材料中的应用[J]. 材料导报,2015(7):33-38. GONG Youning,LI Delong,ZHANG Yupeng,et al. Application of graphene and its composites as anode materials for lithium ion batteries[J]. Materials Review,2015(7):33-38. |