机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 106-121.doi: 10.3901/JME.2021.16.106
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
孙李刚1, 凌超1, 陈浩2, 李东风1
收稿日期:
2020-08-31
修回日期:
2020-12-30
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
李东风(通信作者),男,1978年出生,博士,教授,博士研究生导师。主要研究方向为金属材料和结构的多尺度力学、疲劳和蠕变断裂分析、加工制造中多物理问题的计算模拟和残余应力测量和评估。E-mail:lidongfeng@hit.edu.cn
作者简介:
孙李刚,男,1987年出生,博士,助理教授,硕士研究生导师。主要研究方向为金属材料的力学性能及其微观机理分析、先进纳米结构设计和力学性能预测。E-mail:sunligang@hit.edu.cn;凌超,男,1989年出生,助理教授,硕士研究生导师。主要研究方向为细观力学理论和数值计算方法在金属及高分子材料中的应用。E-mail:lingchao@hit.edu.cn;陈浩,男,1989年出生,博士,特聘副研究员,硕士研究生导师。主要研究方向为材料失效多尺度模拟。E-mail:haochen@ecust.edu.cn
基金资助:
SUN Ligang1, LING Chao1, CHEN Hao2, LI Dongfeng1
Received:
2020-08-31
Revised:
2020-12-30
Online:
2021-08-20
Published:
2021-11-16
摘要: 结构完整性分析一直是机械工程和力学等领域专家学者研究的重要课题。目前在工程装备的设计和评估中应用的安全规范大都是经验性的,亟需开发一种严谨且准确的力学分析方法,不仅可以提高结构完整性评估的精度,还可以安全地提高装备的运行效率。多尺度力学方法可以从材料在不同空间尺度上的微观结构出发,对材料的力学行为进行研究,是能从基础底层推动结构完整性分析的关键。着重回顾近年来关于金属结构材料方面多尺度力学方法的相关研究成果。首先,以分子动力学方法作为微尺度研究方法的代表,介绍金属结构材料的微观变形和断裂机制研究进展。然后,以晶体塑性的连续介质理论为代表,介绍以塑性变形的物理机制和晶体学特征为基础的多尺度力学方法,这种方法考虑晶体弹塑性变形行为的各向异性,具有坚实的物理基础,是一种具有高度可靠性的结构完整性分析方法。最后,笔者就多尺度力学方法目前面临的研究难点和未来发展方向进行了简要讨论。
中图分类号:
孙李刚, 凌超, 陈浩, 李东风. 结构完整性分析中的多尺度力学方法[J]. 机械工程学报, 2021, 57(16): 106-121.
SUN Ligang, LING Chao, CHEN Hao, LI Dongfeng. Application of Multiscale Mechanics Methods in Structural Integrity Analysis[J]. Journal of Mechanical Engineering, 2021, 57(16): 106-121.
[1] 傅恒志. 未来航空发动机材料面临的挑战与发展趋向[J]. 航空材料学报,1998,18(4):52-61. FU Hengzhi. Challenge and development trends to future aero-engine materials[J]. Journal of Aeronautical Materials,1998,18(4):52-61. [2] 陈国良. 高温合金学[M]. 北京:冶金工业出版社,1988. CHENG Guoliang. Superalloys[M]. Beijing:Metallurgical Industry Press,1988. [3] REED R C. The superalloys:fundamentals and applications[M]. New York:Cambridge University,2006. [4] QU S,AN X H,YANG H J,et al. Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. Acta Materialia,2009,57(5):1586-1601. [5] WU X L,JIANG P,CHEN L,et al. Extraordinary strain hardening by gradient structure[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(20):7197-7201. [6] ZHOU X,FENG Z,ZHU L,et al. High-pressure strengthening in ultrafine-grained metals[J]. Nature,2020,579(7797):67-72. [7] HE B B,HU B,YEN H W,et al. High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science,2017,357(6355):1029-1032. [8] ZHU L,RUAN H,LI X,et al. Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals[J]. Acta Materialia,2011,59(14):5544-5557. [9] LI D F,GOLDEN B J,O'DOWD N P. Multiscale modelling of mechanical response in a martensitic steel:A micromechanical and length-scale-dependent framework for precipitate hardening[J]. Acta Materialia,2014,80:445-456. [10] LI D F,BARRETT R A,O'DONOGHUE P E,et al. A multi-scale crystal plasticity model for cyclic plasticity and low-cycle fatigue in a precipitate-strengthened steel at elevated temperature[J] Journal of the Mechanics and Physics of Solids,2017,101:44-62. [11] LI D F,BARRETT R A,O'DONOGHUE P E,et al. Micromechanical finite element modelling of thermo-mechanical fatigue for P91 steels[J]. International Journal of Fatigue,2016,87:192-202. [12] ZEPEDA-RUIZ L A,STUKOWSKI A,OPPELSTRUP T,et al. Probing the limits of metal plasticity with molecular dynamics simulations[J]. Nature,2017,550(7677):492-495. [13] LU K,LU L,SURESH S. Strengthening materials by engineering coherent internal boundaries at the nanoscale[J]. Science,2009,324(5925):349-352. [14] KOU H N,LU J,LI Y. High-strength and high-ductility nanostructured and amorphous metallic materials[J]. Advanced Materials,2014,26(31):5518-5524. [15] SUN L G,HE X Q,LU J. Nanotwinned and hierarchical nanotwinned metals:A review of experimental,computational and theoretical efforts[J]. Npj Computational Materials,2018,4:18. [16] LI X Y,WEI Y J,LU L,et al. Dislocation nucleation governed softening and maximum strength in nano-twinned metals[J]. Nature,2010,464(7290):877-880. [17] JANG D,LI X,GAO H,et al. Deformation mechanisms in nanotwinned metal nanopillars[J]. Nature Nanotechnology,2012,7(9):594-601. [18] YUAN F P,WU X L. Size effects of primary/secondary twins on the atomistic deformation mechanisms in hierarchically nanotwinned metals[J]. Journal of Applied Physics,2013,113(20):203516. [19] SUN L G,WU G,WANG Q,et al. Nanostructural metallic materials:Structures and mechanical properties[J]. Materials Today,2020,38:114-135. [20] WU X L,ZHU Y T. Inverse grain-size effect on twinning in nanocrystalline Ni[J]. Physical Review Letters,2008,101(2):025503. [21] NI S,WANG Y B,LIAO X Z,et al. The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials[J]. Acta Materialia,2012,60(6-7):3181-3189. [22] WANG L H,LU Y,KONG D L,et al. Dynamic and atomic-scale understanding of the twin thickness effect on dislocation nucleation and propagation activities by in situ bending of Ni nanowires[J]. Acta Materialia,2015,90:194-203. [23] ZHU Y T,LIAO X Z,WU X L. Deformation twinning in nanocrystalline materials[J]. Progress in Materials Science,2012,57(1):1-62. [24] ZHANG X,MISRA A,WANG H,et al. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films[J]. Applied Physics Letters,2004,84(7):1096-1098. [25] JIN Z H,GUMBSCH P,MA E,et al. The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals[J]. Scripta Materialia,2006,54(6):1163-1168. [26] JIN Z H,GUMBSCH P,ALBE K,et al. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals[J]. Acta Materialia,2008,56(5):1126-1135. [27] SUN L G,HE X Q,LU J. Atomistic simulation study on twin orientation and spacing distribution effects on nanotwinned Cu films[J]. Philosophical Magazine,2015,95(31):3467-3485. [28] SUN L,LI D,ZHU L,et al. Size-dependent formation and thermal stability of high-order twins in hierarchical nanotwinned metals[J]. International Journal of Plasticity,2020,128:102685. [29] CHEN A Y,ZHU L L,SUN L G,et al. Scale law of complex deformation transitions of nanotwins in stainless steel[J]. Nature Communications,2019,10:1403. [30] LIU X,SUN L,ZHU L,et al. High-order hierarchical nanotwins with superior strength and ductility[J]. Acta Materialia,2018,149:397-406. [31] SUN L G,HE X Q,ZHU L L,et al. Two softening stages in nanotwinned Cu[J]. Philosophical Magazine,2014,94(35):4037-4052. [32] ZHU L L,KOU H N,LU J. On the role of hierarchical twins for achieving maximum yield strength in nanotwinned metals[J]. Applied Physics Letters,2012,101(8):081906. [33] FANG T H,LI W L,TAO N R,et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331(6024):1587-1590. [34] CAO P H. The strongest size in gradient nanograined metals[J]. Nano Letters,2020,20(2):1440-1446. [35] LIN Y,PAN J,ZHOU H F,et al. Mechanical properties and optimal grain size distribution profile of gradient grained nickel[J]. Acta Materialia,2018,153:279-289. [36] LI W B,YUAN F P,WU X L. Atomistic tensile deformation mechanisms of Fe with gradient nano-grained structure[J]. AIP Advances,2015,5(8):087120. [37] FANG Q H,LI L,LI J,et al. Strengthening mechanism of gradient nanostructured body-centred cubic iron film:From inverse Hall-Petch to classic Hall-Petch[J]. Computational Materials Science,2018,152:236-242. [38] ZHOU K,ZHANG T,LIU B,et al. Molecular dynamics simulations of tensile deformation of gradient nano-grained copper film[J]. Computational Materials Science,2018,142:389-394. [39] MA E,ZHU T. Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J]. Materials Today,2017,20(6):323-331. [40] OVID'KO I A,VALIEV R Z,ZHU Y T. Review on superior strength and enhanced ductility of metallic nanomaterials[J]. Progress in Materials Science,2018,94:462-540. [41] BITZEK E,GUMBSCH P. Mechanisms of dislocation multiplication at crack tips[J]. Acta Materialia,2013,61(4):1394-1403. [42] HOLLAND D,MARDER M. Ideal brittle fracture of silicon studied with molecular dynamics[J]. Physical Review Letters,1998,80(4):746-749. [43] KIKUCHI H,KALIA R K,NAKANO A,et al. Brittle dynamic fracture of crystalline cubic silicon carbide (3C-SiC) via molecular dynamics simulation[J] Journal of Applied Physics,2005,98(10):103524. [44] SWADENER J,BASKES M,NASTASI M. Molecular dynamics simulation of brittle fracture in silicon[J]. Physical Review Letters,2002,89(8):085503. [45] WU H,XU D,WANG H,et al. Molecular dynamics simulation of tensile deformation and fracture of γ-TiAl with and without surface defects[J]. Journal of Materials Science & Technology,2016,32(10):1033-1042. [46] ZENG Z,LI X,LU L,et al. Fracture in a thin film of nanotwinned copper[J]. Acta Materialia,2015,98:313-317. [47] ZHANG B,ZHOU L,SUN Y,et al. Molecular dynamics simulation of crack growth in pure titanium under uniaxial tension[J]. Molecular Simulation,2018,44(15):1252-1260. [48] SUN C,JIN Z. Chapter 4-Energy release rate,fracture mechanics[M]. Waltham:Elsevier Academic Press,2012. [49] TCHIPEV N,SECKLER S,HEINEN M,et al. TweTriS:Twenty trillion-atom simulation[J]. The International Journal of High Performance Computing Applications,2019,33(5):838-854. [50] RAFII-TABAR H,SHODJA H,DARABI M,et al. Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities[J]. Mechanics of Materials,2006,38(3):243-252. [51] SHERMAN D,BE'ERY I. Velocity dependent crack deflection in single crystal silicon[J]. Scripta Materialia,2003,49(6):551-555. [52] SEN D,THAULOW C,SCHIEFFERS V,et al. Atomistic study of crack-tip cleavage to dislocation emission transition in silicon single crystals[J]. Physical Review Letters,2010,104(23):235502. [53] KUO J K,HUANG P H,WU W T,et al. Mechanical and fracture behaviors of defective silicon nanowires:Combined effects of vacancy clusters,temperature,wire size,and shape[J]. Applied Physics A,2014,114(4):1247-1256. [54] HAUCH J A,HOLLAND D,MARDER M,et al. Dynamic fracture in single crystal silicon[J]. Physical Review Letters,1999,82(19):3823-3826. [55] BAILEY N P,SETHNA J P. Macroscopic measure of the cohesive length scale:Fracture of notched single-crystal silicon[J]. Physical Review B,2003,68(20):205204. [56] BARTAóK P,KERMODE J,BERNSTEIN N,et al. Machine learning a general-purpose interatomic potential for silicon[J]. Physical Review X,2018,8(4):041048. [57] ROUNTREE C L,KALIA R K,LIDORIKIS E,et al. Atomistic aspects of crack propagation in brittle materials:Multimillion atom molecular dynamics simulations[J]. Annual Review of Materials Research,2002,32(1):377-400. [58] HUANG S,WANG J,ZHOU C. Deformation of heterogeneous nanocrystalline lamella with a preexisting crack[J]. JOM,2018,70(1):60-65. [59] HUANG S,ZHOU C. Fracture resistance of Cu/Nb metallic nanolayered composite[J]. Journal of Materials Research,2019,34(9):1533-1541. [60] TALEBI H,SILANI M,BORDAS S P,et al. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture[J]. International Journal for Multiscale Computational Engineering,2013,11(6):527-541. [61] YAMAKOV V,SAETHER E,PHILLIPS D R,et al. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum[J]. Journal of the Mechanics and Physics of Solids,2006,54(9):1899-1928. [62] DUPUY L M,TADMOR E B,MILLER R E,et al. Finite-temperature quasicontinuum:Molecular dynamics without all the atoms[J]. Physical Review Letters,2005,95(6):060202. [63] CHEN Y. Local stress and heat flux in atomistic systems involving three-body forces[J]. The Journal of Chemical Physics,2006,124(5):054113. [64] CHEN Y,LEE J D,ESKANDARIAN A. Atomistic viewpoint of the applicability of microcontinuum theories[J]. International Journal of Solids and Structures,2004,41(8):2085-2097. [65] ZIMMERMAN J A,WEBB E B,HOYT J,et al. Calculation of stress in atomistic simulation[J]. Modelling and Simulation in Materials Science and Engineering,2004,12(4):S319-S332. [66] HAO T,HOSSAIN Z M. Atomistic mechanisms of crack nucleation and propagation in amorphous silica[J]. Physical Review B,2019,100(1):014204. [67] 王自强,段祝平. 塑性细观力学[M]. 北京:科学出版社,1995. WANG Ziqiang,DUAN Zhuping. Micromechanics of plasticity[M]. Beijing:Science Press,1995. [68] LEE E H,LIU D T. Finite-strain elastic-plastic theory with application to plane-wave analysis[J]. Journal of Applied Physics,1967,38(1):19. [69] MANDEL J. Constitutive equations and directors in plastic and viscoplastic media[J]. International Journal of Solids and Structures,1973,9(6):725-740. [70] HAUPT P. Continuum mechanics and theory of materials[M]. Berlin,Heidelberg:Springer,2002. [71] PEIRCE D,ASARO R J,NEEDLEMAN A. Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica,1983,31(12):1951-1976. [72] CAILLETAUD G. A Micromechanical approach to inelastic behavior of metals[J]. International Journal of Plasticity,1992,8(1):55-73. [73] BUSSO E P,McCLINTOCK F A. A dislocation mechanics-based crystallographic model of a B2-type intermetallic alloy[J]. International Journal of Plasticity,1996,12(1):1-28. [74] CHEONG K S,BUSSO E P. Discrete dislocation density modelling of single phase FCC polycrystal aggregates[J]. Acta Materialia,2004,52(19):5665-5675. [75] MEISSONNIER F T,BUSSO E P,O'DOWD N P. Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains[J]. International Journal of Plasticity,2001,17(4):601-640. [76] CORDERO N M,GAUBERT A,FOREST S,et al. Size effects in generalised continuum crystal plasticity for two-phase laminates[J]. Journal of the Mechanics and Physics of Solids,2010,58(11):1963-1994. [77] SEGURADO J,LEBENSOHN R A,LLORCA J. Computational homogenization of polycrystals[M]//Advances in Crystals and Elastic Metamaterials. San Diego:Elsevier Academic Press,2018:1-114. [78] QUEY R,DAWSON P R,BARBE F. Large-scale 3D random polycrystals for the finite element method:Generation,meshing and remeshing[J]. Computer Methods in Applied Mechanics and Engineering,2011,200(17-20):1729-1745. [79] GROEBER M A,JACKSON M A. DREAM.3D:A digital representation environment for the analysis of microstructure in 3D[J]. Integrating Materials and Manufacturing Innovation,2014,3(1):56-72. [80] ROTERS F,EISENLOHR P,HANTCHERLI L,et al. Overview of constitutive laws,kinematics,homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory,experiments,applications[J]. Acta Materialia,2010,58(4):1152-1211. [81] MOULINEC H,SUQUET P. A numerical method for computing the overall response of nonlinear composites with complex microstructure[J]. Computer Methods in Applied Mechanics and Engineering,1998,157(1-2):69-94. [82] KRöNER E. Statistical continuum mechanics,course held at the department of general mechanics[M]. Vienna:Springer,1971. [83] ROTERS F,DIEHL M,SHANTHRAJ P,et al. DAMASK-The Dusseldorf advanced material simulation kit for modeling multi-physics crystal plasticity,thermal,and damage phenomena from the single crystal up to the component scale[J]. Computational Materials Science,2019,158:420-478. [84] Gélébart L,Derouillat J. AMITEX_FFTP-Simulations FFT massivement parallelism in mechanics of inhomogeneous materials[C]//The Third National Symposium on Structural Calculation,Université Paris-Saclay,May 15-19,2017,Giens,Var,France. ffhal-01923683f. [85] LING C,BESSON J,FOREST S,et al. An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations[J]. International Journal of Plasticity,2016,84:58-87. [86] GUO H J,LING C,BUSSO E P,et al. Crystal plasticity based investigation of micro-void evolution under multi-axial loading conditions[J]. International Journal of Plasticity,2020,129:102673. [87] LING C. Modeling the intragranular ductile fracture of irradiated steels:Effects of crystal anisotropy and strain gradient[D]. Paris:PSL Research University,2017. [88] LEBENSOHN R A,ESCOBEDO J P,CERRETA E K,et al. Modeling void growth in polycrystalline materials[J]. Acta Materialia,2013,61(18):6918-6932. [89] NASSIF O,TRUSTER T J,MA R,et al. Combined crystal plasticity and grain boundary modeling of creep in ferritic-martensitic steels:I. Theory and implementation[J]. Modelling and Simulation in Materials Science and Engineering,2019,27(7):075009. [90] MESSNER M C,NASSIF O,MA R,et al. Combined crystal plasticity and grain boundary modeling of creep in ferritic-martensitic steels:II. The effect of stress and temperature on engineering and microstructural properties[J]. Modelling and Simulation in Materials Science and Engineering,2019,27(7):075010. [91] ZHANG W,WANG X,WANG Y Y,et al. Type IV failure in weldment of creep resistant ferritic alloys:I. Micromechanical origin of creep strain localization in the heat affected zone[J]. Journal of the Mechanics and Physics of Solids,2020,134:103774. [92] ZHANG W,WANG X,WANG Y Y,et al. Type IV failure in weldment of creep resistant ferritic alloys:II. Creep fracture and lifetime prediction[J]. Journal of the Mechanics and Physics of Solids,2020,134:103775. [93] Alberi K,Nardelli M B,Zakutayev A,et al. The 2019 materials by design roadmap[J]. Journal of Physics D:Applied Physics,2018,52(1):013001. [94] Kalidindi S R. Hierarchical materials informatics:novel analytics for materials data[M]. Oxford:Elsevier,2015. [95] Rickman J M,Lookman T,Kalinin S V. Materials informatics:From the atomic-level to the continuum[J]. Acta Materialia,2019,168:473-510. |
[1] | 华东鹏, 周青, 王婉, 李硕, 王志军, 王海丰. 碳化硅纳米抛光亚表面损伤机理的分子动力学模拟[J]. 机械工程学报, 2024, 60(5): 231-240. |
[2] | 张炜, 萧伟健, 袁传牛, 陈荣昕, 张宁, 刘焜. 金属粉末压制中多尺度力学特征不均匀性模拟研究[J]. 机械工程学报, 2024, 60(2): 168-177. |
[3] | 王辉, 黄开, 孙展鹏, 华林, 陈一哲. 压力注胶对硅烷接枝Ni/CFRP粘接的影响[J]. 机械工程学报, 2023, 59(6): 84-94. |
[4] | 姜晨, 高睿, 郑泽希. GaAs材料解理加工分子动力学分析及工艺实验[J]. 机械工程学报, 2023, 59(5): 317-324. |
[5] | 陈学军, 方亚楠, 聂文鹏, 刘凯, 蔡国强, 高波, 高国强, 吴广宁. 牵引变压器油纸绝缘热老化及仿真模拟研究*[J]. 电气工程学报, 2023, 18(3): 109-116. |
[6] | 孙魏, 宋庆瑞, 刘焜, 刘小君, 叶家鑫. 基于分子动力学模拟的石墨烯/聚四氟乙烯复合材料两级抗磨机制研究[J]. 机械工程学报, 2022, 58(13): 175-184. |
[7] | 戴双武, 卢艳. 微结构及温度耦合下的微通道纳米气泡滑移效应[J]. 机械工程学报, 2022, 58(11): 249-259. |
[8] | 王康康, 王小威, 温建锋, 张显程, 巩建鸣, 涂善东. 蠕变断裂:从物理失效机制到结构寿命预测[J]. 机械工程学报, 2021, 57(16): 132-152. |
[9] | 潘伶, 鲁石平, 陈有宏, 余辉. 分子动力学模拟环烷烃含碳量对边界润滑的影响[J]. 机械工程学报, 2020, 56(1): 110-118. |
[10] | 王建梅, 夏全志, 侯定邦, 姚坤. 复合结构衬套合金界面结合性能[J]. 机械工程学报, 2019, 55(18): 36-42. |
[11] | 盛德尊, 张会臣. 面接触下水合羟乙基纤维素的润滑特性研究[J]. 机械工程学报, 2019, 55(1): 120-128. |
[12] | 国树森, 曹永智, 孙涛, 古乐, 张传伟, 李宏川, 徐志强. 动压马达边界润滑技术研究与发展[J]. 机械工程学报, 2018, 54(9): 135-144. |
[13] | 潘帅航, 尹念, 张执南. 微动界面连续干摩擦行为的分子动力学模拟[J]. 机械工程学报, 2018, 54(3): 82-87. |
[14] | 李俊烨, 董坤, 王兴华, 张心明. 颗粒微切削表面创成的分子动力学仿真研究*[J]. 机械工程学报, 2016, 52(17): 94-104. |
[15] | 潘伶, 高诚辉. 纳米间隙润滑剂季戊四醇四酯的压缩性能分子动力学模拟[J]. 机械工程学报, 2015, 51(5): 76-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||