[1] 宋迎东,温卫东,高德平,等. 粉末冶金涡轮盘的应用及寿命研究[J]. 航空动力学报,1996(3):294-298. SONG Yingdong,WEN Weidong,GAO Deping,et al. Application and life research of powder metallurgy turbine disk[J]. Journal of Aerospace Power,1996(3):294-298. [2] 刘丽玉,陶春虎,刘昌奎,等. 发动机粉末合金高压涡轮盘断裂的原因[J]. 机械工程材料,2014,38(8):108-112. LIU Liyu,TAO Chunhu,LIU Changkui,et al. Fracture causes of powder metallurgy high pressure turbine disk of an engine[J]. Materials for Mechanical Engineering,2014,38(8):108-112. [3] 陈光. 航空发动机结构设计分析[M]. 北京:北京航空航天大学出版社,2006. CHEN Guang. Aeroengine structure design analysis[M]. Beijing:Beihang University Press,2006. [4] JIANG R,REED P A S. Critical assessment 21:Oxygen-assisted fatigue crack propagation in turbine disc superalloys[J]. Materials Science and Technology,2016,32(5):401-406. [5] JIANG R,SONG Y D,REED P A. Fatigue crack growth mechanisms in powder metallurgy Ni-based superalloys-A review[J]. International Journal of Fatigue,2020,141:105887. [6] XU C,YAO Z H,DONG J X,et al. Mechanism of high-temperature oxidation effects in fatigue crack propagation and fracture mode for FGH97 superalloy[J]. Rare Metals,2019,38(7):642-652. [7] JIANG R,PROPRENTNER D,CALLISTI M,et al. Role of oxygen in enhanced fatigue cracking in a PM Ni-based superalloy:Stress assisted grain boundary oxidation or dynamic embrittlment?[J]. Corrosion Science,2018,139:141-154. [8] KITAGUCHI H S,LI H Y,EVANS H E,et al. Oxidation ahead of a crack tip in an advanced Ni-based superalloy[J]. Acta Materialia,2013,61(6):1968-1981. [9] LEO PRAKASH D G,WALSH M J,MACLACHLAN D,et al. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue,creep and oxidation[J]. International Journal of Fatigue,2009,31(11-12):1966-1977. [10] LI H Y,SUN J F,HARDY M C,et al. Effects of microstructure on high temperature dwell fatigue crack growth in a coarse grain PM nickel based superalloy[J]. Acta Materialia,2015,90:355-369. [11] SCHULZ F,LI H Y,KITAGUCHI H,et al. Influence of tertiary gamma prime (γ') size evolution on dwell fatigue crack growth behavior in CG RR1000[J]. Metall. and Mat. Trans. A,2018,49(9):3874-3884. [12] LUO J,BOWEN P. Small and long fatigue crack growth behaviour of a PM Ni-based superalloy,Udimet 720[J]. International Journal of Fatigue,2004,26(2):113-124. [13] JIANG R,EVERITT S,LEWANDOWSKI M,et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes[J]. International Journal of Fatigue,2014,62:217-227. [14] JIANG R,EVERITT S,GAO N,et al. Influence of oxidation on fatigue crack initiation and propagation in turbine disc alloy N18[J]. International Journal of Fatigue,2015,75:89-99. [15] JIANG R,BULL D J,PROPRENTNER D,et al. Effects of oxygen-related damage on dwell-fatigue crack propagation in a P/M Ni-based superalloy:From 2D to 3D assessment[J]. International Journal of Fatigue,2017,99:175-186. [16] GABB T P,GAYDA J,TELESMAN J,et al. Factors influencing dwell fatigue life in notches of a powder metallurgy superalloy[J]. International Journal of Fatigue,2013,48:55-67. [17] GABB T P,KANTZOS P T,TELESMAN J,et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk[J]. International Journal of Fatigue,2011,33(3):414-426. [18] TELESMAN J,SMITH T M,GABB T P,et al. An abrupt transition to an intergranular failure mode in the near-threshold fatigue crack growth regime in Ni-based superalloys[J]. Metall. and Mat. Trans. A,2018,49(9):3838-3853. [19] TELESMAN J,GABB T P,GARG A,et al. Effect of microstructure on time dependent fatigue crack growth behavior in a P/M turbine disk alloy[J]. TMS Superalloys,2008:807-816. [20] 侯杰,董建新,姚志浩. GH4169合金高温疲劳裂纹扩展的微观损伤机制[J]. 工程科学学报,2018,40(7):822-832. HOU Jie,DONG Jianxin,YAO Zhihao. Microscopic damage mechanisms during fatigue crack propagation at high temperature in GH4169 superalloy[J]. Chinese Journal of Engineering,2018,40(7):822-832. [21] 何玉怀,郭伟彬,蔚夺魁,等. 加载频率对直接时效GH4169高温合金疲劳裂纹扩展性能的影响[J]. 失效分析与预防,2008,3(1):10-14. HE Yuhuai,GUO Weibin,WEI Duokui,et al. Effect of loading frequency on fatigue crack growth of direct aging GH4169 superalloy[J]. Failure Analysis and Prevention,2008,3(1):10-14. [22] 徐超,佴启亮,姚志浩,等. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报,2017,53(11):1453-1460. XU Chao,NAI Qiliang,YAO Zhihao,et al. Grain boundary oxidation effect of GH4738 superalloy on fatigue crack growth[J]. Acta Metallurgica Sinica,2017,53(11):1453-1460. [23] 佴启亮,董建新,张麦仓,等. GH4720Li合金疲劳裂纹扩展速率的温度敏感性[J]. 稀有金属材料与工程,2017,46(10):2915-2921. NAI Qiliang,DONG Jiangxin,ZHANG Maicang,et al. Temperature sensitivity of fatigue crack growth rate for GH4720Li alloy[J]. Rare Metal Materials and Engineering,2017,46(10):2915-2921. [24] 赵勇铭,宋迎东. 夹杂对粉末高温合金裂纹扩展寿命的影响[J]. 航空动力学报,2005,20(5):772-777. ZHAO Yongming,SONG Yingdong. Influence of inclusions on crack growth life of powder metallurgy[J]. Journal of Aerospace Power,2005,20(5):772-777. [25] 姚志浩,董建新,张麦仓,等. 组织特征对粉末高温合金FGH96疲劳裂纹扩展速率的影响[J]. 机械工程学报,2013,49(20):158-164. YAO Zhihao,DONG Jianxin,ZHANG Maicang,et al. Effects of microstructure characteristics on fatigue crack growth rate of powder metallurgy superalloy FGH96[J]. Journal of Mechanical Engineering,2013,49(20):158-164. [26] ZHANG L N,WANG P,DONG J X,et al. Microstructures' effects on high temperature fatigue failure behavior of typical superalloys[J]. Materials Science and Engineering:A,2013,587:168-178. [27] 佴启亮,董建新,张麦仓,等. 粉末高温合金FGH97疲劳裂纹扩展行为[J]. 工程科学学报,2016,38(2):248-256. NAI Qiliang,DONG Jianxin,ZHANG Maicang,et al. Fatigue behavior of powder metallurgy superalloy FGH97[J]. Chinese Journal of Engineering,2016,38(2):248-256. [28] LIU H,BAO R,ZHANG J,et al. A creep-fatigue crack growth model containing temperature and interactive effects[J]. International Journal of Fatigue,2014,59:34-42. [29] 杨健,董建新,张麦仓,等. 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究[J]. 金属学报,2013,49(1):71-80. YANG Jian,DONG Jianxin,ZHANG Maicang,et al. High temperature fatigue crack growth behavior of a novel powder metallurgy superalloy FGH98[J]. Acta Metallurgical Sinica,2013,49(1):71-80. [30] XU C,YAO Z H,DONG J X. The sharp drop in fatigue crack growth life at a critical elevated temperature for a PM Ni-based superalloy FGH97[J]. Materials Science and Engineering:A,2019,761:138038. [31] MOLINS R,HOCHSTETTER G,CHASSAIGNE J C,et al. Oxidation effects on the fatigue crack growth behaviour of alloy 718 at high temperature[J]. Acta Materialia,1997,45(2):663-674. [32] CHAN K S,ENRIGHT M P,MOODY J,et al. A microstructure-based time-dependent crack growth model for life and reliability prediction of turbopropulsion systems[J]. Metall. and Mat. Trans. A,2014,45(1):287-301. [33] MACIEJEWSKI K,DAHAL J,SUN Y,et al. Creep-environment interactions in dwell-fatigue crack gowth of nickel based superalloys[J]. Metall. and Mat. Trans. A,2014,45(5):2508-2521. [34] TELESMAN J,GABB T P,GHOSN L J. Separating the influence of environment from stress relaxation effects on dwell fatigue crack growth in a nickel-base disk alloy[C]//Thirteenth International Symposium on Superalloys,Seven Springs,Pa,USA. Volume:Superalloys 2016:549-560. [35] EVERITT S,JIANG R,GAO N,et al. Comparison of fatigue crack propagation behaviour in two gas turbine disc alloys under creep-fatigue conditions:evaluating microstructure,environment and temperature effects[J]. Materials Science and Technology,2013,29(7):781-787. [36] PINEAU A,ANTOLOVICH S D. High temperature fatigue of nickel-base superalloys-A review with special emphasis on deformation modes and oxidation[J]. Engineering Failure Analysis,2009,16(8):2668-2697. [37] VISKARI L,HöRNQVIST M,MOORE K L,et al. Intergranular crack tip oxidation in a Ni-base superalloy[J]. Acta Materialia,2013,61(10):3630-3639. [38] CHRIST H J,WACKERMANN K,KRUPP U. Effect of dynamic embrittlement on high temperature fatigue crack propagation in IN718-experimental characterisation and mechanism-based modelling[J]. Materials at High Temperatures,2016,33(4-5):528-535. [39] KRUPP U,KANE W M,LAIRD C,et al. Brittle intergranular fracture of a Ni-base superalloy at high temperatures by dynamic embrittlement[J]. Materials Science and Engineering:A,2004,387:409-413. [40] PFAENDTNER J A,MCMAHON Jr C J. Oxygen-induced intergranular cracking of a Ni-base alloy at elevated temperatures-An example of dynamic embrittlement[J]. Acta Materialia,2001,49(16):3369-3377. [41] TONG,BYRNE. Effects of frequency on fatigue crack growth at elevated temperature[J]. Fatigue & Fracture of Engineering Materials & Structures,1999,22(3):185-193. [42] DAHAL J,MACIEJEWSKI K,GHONEM H. Loading frequency and microstructure interactions in intergranular fatigue crack growth in a disk Ni-based superalloy[J]. International Journal of Fatigue,2013,57:93-102. [43] ADAIR B S,JOHNSON W S,ANTOLOVICH S D,et al. Identification of fatigue crack growth mechanisms in IN100 superalloy as a function of temperature and frequency[J]. Fatigue & Fracture of Engineering Materials & Structures,2013,36(3):217-227. [44] KRUPP U,WACKERMANN K,CHRIST H J,et al. Intergranular oxidation effects during dwell-time fatigue of high-strength superalloys[J]. Oxid. Met.,2017,88(1):3-14. [45] 吴圣川,李存海,张文,等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报,2019,40(6):489-538. WU Shengchuan,LI Cunhai,ZHANG Wen,et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics,2019,40(6):489-538. [46] EVANS J L,SAXENA A. Elevated temperature fatigue crack growth rate model for NI-BASE superalloys[J]. Int. J. Fract.,2014,185(1):209-216. [47] FINDLEY K O,EVANS J L,SAXENA A. A critical assessment of fatigue crack nucleation and growth models for Ni-and Ni, Fe-based superalloys[J]. International Materials Reviews,2011,56(1):49-71. [48] 刘晓,轩福贞,涂善东. 蠕变-疲劳交互作用下结构缺陷评定方法的比较[J]. 机械强度,2009,31(2):269-275. LIU Xiao,XUAN Fuzhen,TU Shandong. Comparisons of different defect assessment procedures for defected structures under creep-fatigue loadings[J]. Journal of Mechanical Strength,2009,31(2):269-275. [49] MIAO G,YANG X,SHI D. Competing fatigue failure behaviors of Ni-based superalloy FGH96 at elevated temperature[J]. Materials Science and Engineering:A,2016,668:66-72. [50] HU D,WANG T,MA Q,et al. Effect of inclusions on low cycle fatigue lifetime in a powder metallurgy nickel-based superalloy FGH96[J]. International Journal of Fatigue,2019,118:237-248. [51] CHAN K S,ENRIGHT M P,MOODY J P,et al. Life prediction for turbopropulsion systems under dwell fatigue conditions[J]. Journal of Engineering for Gas Turbines and Power,2012,134(12):122501-7. [52] CHAN K S,ENRIGHT M P,MOODY J,et al. Mitigating time-dependent crack growth in Ni-base superalloy components[J]. International Journal of Fatigue,2016,82:332-341. [53] CHAN K S. Mechanistic modelling of time-dependent fatigue crack growth in Ni-based superalloys[J]. Materials at High Temperatures,2016,33(4-5):425-438. [54] CHAN K S,ENRIGHT M P,MOODY J,et al. A microstructure-based time-dependent crack growth model for life and reliability prediction of turbopropulsion systems[J]. Metallurgical & Materials Transactions A,2014,45(1):287-301. [55] SUN Y,MACIEJEWSKI K,GHONEM H. A damage-based cohesive zone model of intergranular crack growth in a nickel-based superalloy[J]. International Journal of Damage Mechanics,2013,22(6):905-923. [56] WEN J F,SRIVASTAVA A,Benzerga A A,et al. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading[J]. Journal of the Mechanics & Physics of Solids,2017,108:68-84. [57] WEN J F,LIU Y,SRIVASTAVA A,et al. Environmentally enhanced creep crack growth by grain boundary cavitation under cyclic loading[J]. Acta Materialia,2018,153:136-146. [58] MCDOWELL D L,DUNNE F P E. Microstructure-sensitive computational modeling of fatigue crack formation[J]. International Journal of Fatigue,2010,32(9):1521-1542. [59] DUNNE F P E,WILKINSON A J,ALLEN R. Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal[J]. International Journal of Plasticity,2007,23(2):273-295. [60] LIN B,ZHAO L G,TONG J. A crystal plasticity study of cyclic constitutive behaviour,crack-tip deformation and crack-growth path for a polycrystalline nickel-based superalloy[J]. Engineering Fracture Mechanics,2011,78(10):2174-2192. [61] ZHAO L G. Modeling of oxygen diffusion along grain boundaries in a nickel-based superalloy[J]. Journal of Engineering Materials and Technology,2011,133(3):031002. [62] FARUKH F,ZHAO L G,BARNARD N C,et al. Computational modelling of full interaction between crystal plasticity and oxygen diffusion at a crack tip[J]. Theoretical and Applied Fracture Mechanics,2017,96:707-719. [63] KARABELA A,ZHAO L G,LIN B,et al. Oxygen diffusion and crack growth for a nickel-based superalloy under fatigue-oxidation conditions[J]. Materials Science and Engineering:A,2013,567:46-57. [64] ZHAO L G,TONG J,HARDY M C. Prediction of crack growth in a nickel-based superalloy under fatigue-oxidation conditions[J]. Engineering Fracture Mechanics,2010,77(6):925-938. [65] STEKOVIC S,JONES J P,ENGEL B,et al. DevTMF-Towards code of practice for thermo-mechanical fatigue crack growth[J]. International Journal of Fatigue,2020,138:105675. [66] NORMAN V,STEKOVIC S,JONES J,et al. On the mechanistic difference between in-phase and out-of-phase thermo-mechanical fatigue crack growth[J]. International Journal of Fatigue,2020,135:105528. [67] JONES J,WHITTAKER M,LANCASTER R,et al. The effect of phase angle on crack growth mechanisms under thermo-mechanical fatigue loading[J]. International Journal of Fatigue,2020,135:105539. |