• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 132-152.doi: 10.3901/JME.2021.16.132

• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇    下一篇

扫码分享

蠕变断裂:从物理失效机制到结构寿命预测

王康康1, 王小威2, 温建锋1, 张显程1, 巩建鸣2, 涂善东1   

  1. 1. 华东理工大学承压设备与安全教育部重点实验室 上海 200237;
    2. 南京工业大学机械与动力工程学院 南京 211816
  • 收稿日期:2021-04-01 修回日期:2021-06-20 出版日期:2021-08-20 发布日期:2021-11-16
  • 通讯作者: 温建锋(通信作者),男,1985年出生,博士,特聘教授。主要研究方向为高温结构的损伤与断裂。E-mail:jfwen@ecust.edu.cn;张显程,男,1979年出生,博士,教授。主要研究方向为高温装备的长寿命设计、预测及提升。E-mail:xczhang@ecust.edu.cn
  • 作者简介:王康康,男,1994年出生,博士研究生。主要研究方向为蠕变疲劳氧化的损伤机理及寿命预测技术。E-mail:kangkwang@126.com;王小威,男,1988年出生,博士,副教授。主要研究方向为高温焊接结构的损伤机制和本构模型。E-mail:xwwang@njtech.edu.cn;巩建鸣,男,1962年出生,博士,教授。主要研究方向为石化设备高温损伤、强度分析,寿命评价及设备失效分析。E-mail:gongjm@njtech.edu.cn;涂善东,男,1961年出生,博士,教授。主要研究方向为高温结构完整性与安全技术。E-mail:sttu@ecust.edu.cn
  • 基金资助:
    国家重点研发计划(2018YFC0808800)、国家自然科学基金(51875203)、上海市东方学者岗位和中央高校基本科研业务费专项资金资助项目。

Creep Rupture: From Physical Failure Mechanisms to Lifetime Prediction of Structures

WANG Kangkang1, WANG Xiaowei2, WEN Jianfeng1, ZHANG Xiancheng1, GONG Jianming2, TU Shantung1   

  1. 1. Key Laboratory of Pressure Equipment and Safety, Ministry of Education, East China University of Science and Technology, Shanghai 200237;
    2. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816
  • Received:2021-04-01 Revised:2021-06-20 Online:2021-08-20 Published:2021-11-16

摘要: 蠕变断裂是高温部件最主要的失效模式之一,其特点在于失效前难见征兆,往往造成灾难性后果。澄清材料蠕变失效的微观物理机制,建立恰当的蠕变寿命预测模型是解决高温结构完整性评定、蠕变全寿命设计与运行维护的关键问题。从蠕变失效的微观物理机制出发,以蠕变寿命预测方法为落脚点,详细阐述蠕变孔洞形核长大机理,对描述蠕变损伤行为的力学模型进行归纳整理,总结对高温结构及其焊接接头进行蠕变寿命预测所需的基础理论与关键技术,对基于数字孪生技术的寿命预测方法进行展望。

关键词: 蠕变失效, 物理机制, 蠕变孔洞, 损伤模型, 寿命预测, 数字孪生

Abstract: Creep rupture is one of the major failure modes for high temperature components, which often occurs without obvious sign and thus often brings disastrous consequences. Clarifying micro-physical mechanisms of creep failure and building appropriate creep life models are the key elements to perform the high temperature structural integrity assessment, creep life design, operation and maintenance. Starting with the physical mechanism of creep failure at micro scale, the aim is to seek for a foothold in the lifetime prediction method. Meanwhile, the mechanisms of creep cavity nucleation and growth, the mechanical models describing creep damage behaviours, the basic theory and the key technology needed for creep lifetime prediction of components and their weldments are reviewed as well. Finally, the method of lifetime prediction based on digital twins is forecasted.

Key words: creep failure, physical mechanism, creep cavity, damage model, lifetime prediction, digital twin

中图分类号: