机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 132-152.doi: 10.3901/JME.2021.16.132
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
王康康1, 王小威2, 温建锋1, 张显程1, 巩建鸣2, 涂善东1
收稿日期:
2021-04-01
修回日期:
2021-06-20
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
温建锋(通信作者),男,1985年出生,博士,特聘教授。主要研究方向为高温结构的损伤与断裂。E-mail:jfwen@ecust.edu.cn;张显程,男,1979年出生,博士,教授。主要研究方向为高温装备的长寿命设计、预测及提升。E-mail:xczhang@ecust.edu.cn
作者简介:
王康康,男,1994年出生,博士研究生。主要研究方向为蠕变疲劳氧化的损伤机理及寿命预测技术。E-mail:kangkwang@126.com;王小威,男,1988年出生,博士,副教授。主要研究方向为高温焊接结构的损伤机制和本构模型。E-mail:xwwang@njtech.edu.cn;巩建鸣,男,1962年出生,博士,教授。主要研究方向为石化设备高温损伤、强度分析,寿命评价及设备失效分析。E-mail:gongjm@njtech.edu.cn;涂善东,男,1961年出生,博士,教授。主要研究方向为高温结构完整性与安全技术。E-mail:sttu@ecust.edu.cn
基金资助:
WANG Kangkang1, WANG Xiaowei2, WEN Jianfeng1, ZHANG Xiancheng1, GONG Jianming2, TU Shantung1
Received:
2021-04-01
Revised:
2021-06-20
Online:
2021-08-20
Published:
2021-11-16
摘要: 蠕变断裂是高温部件最主要的失效模式之一,其特点在于失效前难见征兆,往往造成灾难性后果。澄清材料蠕变失效的微观物理机制,建立恰当的蠕变寿命预测模型是解决高温结构完整性评定、蠕变全寿命设计与运行维护的关键问题。从蠕变失效的微观物理机制出发,以蠕变寿命预测方法为落脚点,详细阐述蠕变孔洞形核长大机理,对描述蠕变损伤行为的力学模型进行归纳整理,总结对高温结构及其焊接接头进行蠕变寿命预测所需的基础理论与关键技术,对基于数字孪生技术的寿命预测方法进行展望。
中图分类号:
王康康, 王小威, 温建锋, 张显程, 巩建鸣, 涂善东. 蠕变断裂:从物理失效机制到结构寿命预测[J]. 机械工程学报, 2021, 57(16): 132-152.
WANG Kangkang, WANG Xiaowei, WEN Jianfeng, ZHANG Xiancheng, GONG Jianming, TU Shantung. Creep Rupture: From Physical Failure Mechanisms to Lifetime Prediction of Structures[J]. Journal of Mechanical Engineering, 2021, 57(16): 132-152.
[1] 涂善东. 高温结构完整性原理[M]. 北京:科学出版社,2003.TU Shantung. High temperature structural integrity[M]. Beijing:Science Press,2003. [2] MOURYA R K,BANERJEE A,SREEDHAR B K. Effect of creep on the failure probability of bolted flange joints[J]. Engineering Failure Analysis,2015,50:71-87. [3] ANDRADE E N D C. On the viscous flow in metals,and allied phenomena[J]. Proceedings of the Royal Society of London Series A,Containing Papers of a Mathematical and Physical Character,1910,84(567):1-12. [4] BAILEY R. The utilization of creep test data in engineering design[J]. Proceedings of the Institution of Mechanical Engineers,1935,131(1):131-349. [5] McLEAN M,DYSON B F. Modeling the effects of damage and microstructural evolution on the creep behavior of engineering alloys[J]. Journal of Engineering Materials & Technology,2000,122(3):273-278. [6] RAJ R. Nucleation of cavities at second phase particles in grain boundaries[J]. Acta Metallurgica,1978,26(6):995-1006. [7] RAJ R. Intergranular fracture in bicrystals[J]. Acta Metallurgica,1978,26(2):341-349. [8] EVANS H E. Mechanisms of creep fracture[M]. London:Elsevier Applied Science Publishers,1984. [9] YAO H T,XUAN F Z,WANG Z,et al. A review of creep analysis and design under multi-axial stress states[J]. Nuclear Engineering & Design,2007,237(18):1969-1986. [10] RAJ R,ASHBY M F. Intergranular fracture at elevated temperature[J]. Acta Metallurgica,1975,23(6):653-666. [11] AHMADI M R,SONDEREGGER B,YADAV S D,et al. Modelling and simulation of diffusion driven pore formation in martensitic steels during creep[J]. Materials Science & Engineering A,2018,712(17):466-477. [12] HIRTH J P,NIX W D. Analysis of cavity nucleation in solids subjected to external and internal stresses[J]. Acta Metallurgica,1985,33(3):359-368. [13] BOURGEOIS L,BOUGARAN G,NIE J F,et al. Voids formed from solidifying tin particles in solid aluminium[J]. Philosophical Magazine Letters,2010,90(11):819-829. [14] PATRA A,McDOWELL D L. A void nucleation and growth based damage framework to model failure initiation ahead of a sharp notch in irradiated bcc materials[J]. Journal of the Mechanics and Physics of Solids,2015,74:111-135. [15] NAKAMURA K,OHNUMA T,OGATA T. First-principles study of structure,vacancy formation,and strength of bcc Fe/V4C3interface[J]. Journal of Materials Science,2011,46(12):4206-4215. [16] SANDSTRM R,HE J. Survey of creep cavitation in fcc metals[M]. London:In Tech,2017. [17] RIEDEL H. Cavity nucleation at particles on sliding grain boundaries. A shear crack model for grain boundary sliding in creeping polycrystals[J]. Acta Metallurgica,1984,32(3):313-321. [18] TRAIVIRATANA S,BRINGA E M,BENSON D J,et al. Void growth in metals:Atomistic calculations[J]. Acta Materialia,2008,56(15):3874-3886. [19] DU N,BOWER A F,KRAJEWSKI P E. Numerical simulations of void growth in aluminum alloy AA5083 during elevated temperature deformation[J]. Materials Science & Engineering A,2010,527(18-19):4837-4846. [20] HU J D,XUAN F Z,LIU C J,et al. Modelling of cavity nucleation under creep-fatigue interaction[J]. Mechanics of Materials,2021,156:103799. [21] SANDSTROM R,WU R. Influence of phosphorus on the creep ductility of copper[J]. Journal of Nuclear Materials,2013,441(1):364-371. [22] HE J,SANDSTROM R. Modelling grain boundary sliding during creep of austenitic stainless steels[J]. Journal of Materials Science,2016,51(6):2926-2934. [23] HE J,SANDSTROM R. Formation of creep cavities in austenitic stainless steels[J]. Journal of Materials Science,2016,51(14):6674-6685. [24] TRINKAUS H,YOO M H. Nucleation under time-dependent supersaturation[J]. Philosophical Magazine A,1987,55(3):269-289. [25] NIEH T G,NIX W D. A comparison of the dimple spacing on intergranular creep fracture surfaces with the slip band spacing for copper[J]. Scripta Metallurgica,1980,14(3):0-368. [26] JAZAERI H,BOUCHARD P,HUTCHINGS M,et al. An investigation into creep cavity development in 316H stainless steel[J]. Metals,2019,9(3):318. [27] GUO H,LING C,BUSSO E P,et al. Crystal plasticity based investigation of micro-void evolution under multi-axial loading conditions[J]. International Journal of Plasticity,2020,129:102673. [28] 谈建平. 纳入拘束效应的含裂纹结构蠕变寿命评价方法研究[D]. 上海:华东理工大学,2014.TAN Jianping. Creep life assessment of structures containing crack incorporating constraint effect[D]. Shanghai:East China University of Science and Technology,2014. [29] JAZAERI H,BOUCHARD P J,HUTCHINGS M T,et al. Study of creep cavitation in stainless steel weldment[J]. Materials Science and Technology,2014,30(1):38-42. [30] WANG L Y,SONG Z M,LUO X M,et al. 3D X-ray tomography characterization of creep cavities in small-punch tested 316 stainless steels[J]. Materials Science & Engineering A,2018,724:69-74. [31] DAS A. Martensite-void interaction[J]. ScriptaMaterialia, 2013,68(7):514-517. [32] BRINGA E M,TRAIVIRATANA S,MEYERS M A. Void initiation in fcc metals:Effect of loading orientation and nanocrystalline effects[J]. Acta Materialia,2010,58(13):4458-4477. [33] FANG H,VERSTEYLEN C D,ZHANG S,et al. Autonomous filling of creep cavities in Fe-Au alloys studied by synchrotron X-ray nano-tomography[J]. Acta Materialia,2016,121:352-364. [34] BOUCHARD P J,WITHERS P J,MCDONALD S A,et al. Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel[J]. Acta Materialia,2004,52(1):23-34. [35] SKLENICKA V,KUCHAROVA K,SVOBODA M,et al. Long-term creep behavior of 9-12%Cr power plant steels[J]. Materials Characterization,2003,51(1):35-48. [36] HULL D,RIMMER D E. The growth of grain-boundary voids under stress[J]. Philosophical Magazine,1959,4(42):673-687. [37] RIEDEL,HERMANN. Fracture at high temperatures[M]. Springer-Verlag,1987. [38] TEJER C,RICE J R. The shape of intergranular creep cracks growing by surface diffusion[J]. Acta Metallurgica,1973,21(12):1625-1628. [39] NEEDLEMAN A,RICE J R. Plastic creep flow effects in the diffusive cavitation of grain boundaries[J]. Acta Metallurgica,1980,28(10):1315-1332. [40] Nix W D,YU K S,Wang J S. The effects of segregation on the kinetics of irrtergranular cavity growth under creep conditions[J]. Metallurgical Transactions A,1983,14:563-570. [41] ANKIT K,PRASAD N. Simulation of creep cavity growth in Inconel 718 alloy[J]. Materials Science & Engineering A,2011,528(12):4209-4216. [42] RICE J R,TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids,1969,17(3):201-217. [43] HANCOCK J W. Creep cavitation without a vacancy flux[J]. Metal Science,1976,10(9):319-325. [44] BEERE W,SPEIGHT M V. Creep cavitation by vacancy diffusion in plastically deforming solid[J]. Metal Science,1978,12(4):172-176. [45] CHEN I,ARGON A S. Diffusive growth of grain-boundary cavities[J]. Acta Metallurgica,1981,29(10):1759-1768. [46] OGATA T,SAKAI T,YAGUCHI M. Modelling of creep damage in high temperature component life assessment[J]. Materials at High Temperatures,2011,28(2):147-154. [47] McCLINTOCK F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics,1968,35(2):363-371. [48] WECK A,WILKINSON D S,MAIRE E,et al. Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials[J]. Acta Materialia,2008,56(12):2919-2928. [49] DZIECIOL K,BORBELY A,SKET F,et al. Void growth in copper during high-temperature power-law creep[J]. Acta Materialia,2011,59(2):671-677. [50] DYSON B F. Constraints on diffusional cavity growth rates[J]. Metal Science,1976,10(10):349-353. [51] KASSNER M E,HAYES T A. Creep cavitation in metals[J]. International Journal of Plasticity,2003,19(10):1715-1748. [52] KASSNER M. Fundamentals of creep in metals and alloys[M]. 2nd ed. Butterworth-Heinemann:Elsevier,2004. [53] EVANS H E. The mechanism of void growth and factors affecting the onset of intergranular failure during creep of a Mg-0·8% Al alloy[J]. Metal Science,1969,3(1):33-38. [54] ROODPOSHTI P S,SARKAR A,MURTY K L,et al. Grain boundary sliding mechanism during high temperature deformation of AZ31 Magnesium alloy[J]. Materials Science and Engineering:A,2016,669:171-177. [55] CHEN I W. Cavity growth on a sliding grain boundary[J]. Metallurgical Transactions A,1983,14(11):2289-2293. [56] VANDER GIESSEN E,VANDER BURG M W D,NEEDLEMAN A,et al. Void growth due to creep and grain-boundary diffusion at high triaxialities[J]. Journal of the Mechanics & Physics of Solids,1995,43(1):123-165. [57] SHAM T L,NEEDLEMAN A. Effects of triaxial stressing on creep cavitation of grain boundaries[J]. Acta Metallurgica,1983,31(6):919-926. [58] TVERGAARD V. On the creep constrained diffusive cavitation of grain boundary facets[J]. Journal of the Mechanics & Physics of Solids,1984,32(5):373-393. [59] BUDIANSKY B,HUTCHINSON J W,SLUTSKY S. Void growth and collapse in viscous solids[J]. Mechanics of Solids the Rodney Hill Anniversary Volume,1982:13-45. [60] KUMAR R,VILLANOVA J,LHUISSIER P,et al. In situ nanotomography study of creep cavities in Al-3.6-Cu alloy[J]. Acta Materialia,2019,166:18-27. [61] RAGAB A R. Creep rupture as a result of grain boundary cavitation including void shape changes[J]. Materials Science and Technology,2005,21(4):399-407. [62] CHANG H J,Segurado J,LLorca J,et al. Three-dimensional dislocation dynamics analysis of size effects on void growth[J]. Scripta Materialia,2015,95:11-14. [63] NOELL P,CARROLL J,HATTAR K,et al. Do voids nucleate at grain boundaries during ductile rupture?[J]. Acta Materialia,2017,137:103-114. [64] SILLS R B,BOYCE B L. Void growth by dislocation adsorption[J]. Materials Research Letters,2020,8(3):103-109. [65] NOELL P J,SABISCH J E C,MEDLIN D L,et al. Nanoscale conditions for ductile void nucleation in copper:vacancy condensation and the growth-limited microstructural state[J]. Acta Materialia,2020,184:211-224. [66] WESTWOOD C,PAN J,CROCOMBE A D. Nucleation,growth and coalescence of multiple cavities at a grain-boundary[J]. European Journal of Mechanics-A/Solids,2004,23(4):579-597. [67] ZHANG S,KWAKERNAAK C,SLOOF W,et al. Self healing of creep damage by gold precipitation in iron alloys[J]. Advanced Engineering Materials,2015,17(5):598-603. [68] WANG X,WANG X,LUO B,et al. Analysis of cavity evolution in 9%Cr heat-resistant steel welded joint during creep[J]. Engineering Fracture Mechanics,2018,202:394-404. [69] KAFTELEN H,BALDAN A. Comparative creep damage assessments using the various models[J]. Journal of Materials Science,2004,39(13):4199-4210. [70] DAS A,ROY N,RAY A K. Stress induced creep cavity[J]. Materials Science and Engineering:A,2014,598:28-33. [71] DU N,BOWER A F,KRAJEWSKI P E. Numerical simulations of void growth in aluminum alloy AA5083 during elevated temperature deformation[J]. Materials Science and Engineering A-structural Materials Properties Microstructure and Processing,2010,527(18):4837-4846. [72] SPEIGHT M V,BEERE W. Vacancy potential and void growth on grain boundaries[J]. Metal Science,1975,9(1):190-191. [73] COCKS A C F,ASHBY M F. Intergranular fracture during power-law creep under multiaxial stresses[J]. Metal Science,1980,14:395-402. [74] MAHESH S,ALUR K C,MATHEW M D. A creep model for austenitic stainless steels incorporating cavitation and wedge cracking[J]. Modelling and Simulation in Materials Science and Engineering,2011,19(1):015005. [75] WEN J F,TU S T,XUAN F Z,et al. Effects of stress level and stress state on creep ductility:Evaluation of different models[J]. Journal of Materials Science & Technology,2016,32(8):695-704. [76] NORTON F H. The creep of steel at high temperatures[M]. New York:McGraw-Hill Book Company,Incorporated,1929. [77] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture,1958,8:26-31. [78] RABOTNOV Y N,LECKIE F A,PRAGER W. Creep problems in structural members[J]. Journal of Applied Mechanics,1970,37(1):249. [79] HAQUE M S,STEWART C M. Comparative analysis of the sin-hyperbolic and Kachanov-Rabotnov creep-damage models[J]. International Journal of Pressure Vessels and Piping,2019,171:1-9. [80] CANO J A,STEWART C M. A continuum damage mechanics(CDM) based Wilshire model for creep deformation,damage,and rupture prediction[J]. Materials Science and Engineering:A,2020,799(4):140231. [81] LIU Y,MURAKAMI S. Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis[J]. JSME International Journal,2008,41(1):57-65. [82] Wen J F,TU S T,Gao X L,et al. Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model[J]. Engineering Fracture Mechanics,2013,98:169-184. [83] YATOMI M,NIKBIN K M,O"DOWD N P. Creep crack growth prediction using a damage based approach[J]. International Journal of Pressure Vessels and Piping,2003,80(7-8):573-583. [84] YATOMI M,TABUCHI M. Issues relating to numerical modelling of creep crack growth[J]. Engineering Fracture Mechanics,2010,77(15):3043-3052. [85] OH C S,KIM N H,MIN S H,et al. Finite element damage analyses for predictions of creep crack growth[C]//Proceedings of the Asme Pressure Vessels & Piping Division/k-pvp Conference,F,2010. [86] OH C S,KIM N H,KIM Y J,et al. Creep failure simulations of 316H at 550℃:Part I-A method and validation[J]. Engineering Fracture Mechanics,2011,78(17):2966-2977. [87] WEN J F,TU S T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction[J]. Engineering Fracture Mechanics,2014,123:197-210. [88] BARBERA D,CHEN H,LIU Y. Advances on creep-fatigue damage assessment in notched components[J]. Fatigue & Fracture of Engineering Materials & Structures,2017,40(11):1854-1867. [89] CHAVOSHI S Z,HILL L T,BAGNOLI K E,et al. A combined fugacity and multi-axial ductility damage approach in predicting high temperature hydrogen attack in a reactor inlet nozzle[J]. Engineering Failure Analysis,2020,117:104948. [90] CHAVOSHI S Z,TAGARIELLI V L,ZHAO L,et al. Finite element analysis of creep-fatigue-oxidation interactions in 316H stainless steel[J]. Engineering Failure Analysis,2020,116:104709. [91] RODIN G J,PARKS D M. Constitutive models of a power-law matrix containing aligned penny-shaped cracks[J]. Mechanics of Materials,1986,5(3):221-228. [92] RODIN G J,PARKS D M. A self-consistent analysis of a creeping matrix with aligned cracks[J]. Journal of the Mechanics & Physics of Solids,2015,36(2):237-249. [93] RANJEKAR T,MAHESH S. Comparison of continuum damage laws under uniaxial creep for an AISI 316 stainless steel[J]. Transactions of the Indian Institute of Metals,2018,71(4):935-940. [94] MENG Q,WANG Z. Creep damage models and their applications for crack growth analysis in pipes:A review[J]. Engineering Fracture Mechanics,2016,205:547-576. [95] OLSZAK W,BYCHAWSKI Z. Creep phenomena and failure of nonlinear rotational membranes[J]. Problemy Gidrodinamiki i Mekhaniki Sploshnoy Sredy,LI Sedov vol Moskva:Nauka,1969,387:91. [96] SIDOROFF F. Description of anisotropic damage application to elasticity[M]. Physical Non-Linearities in Structural Analysis. Springer. 1981:237-244. [97] SOSNIN O V,GOREV B V,RUBANOV V V. Energy variant of theory of creep[J]. Strength of Materials,1976,8(11):1261-1266. [98] PAYTEN W M,DEAN D W,SNOWDEN K U. A strain energy density method for the prediction of creep-fatigue damage in high temperature components[J]. Materials Science & Engineering A,2010,527(7-8):1920-1925. [99] WANG R Z,ZHANG X C,TU S T,et al. A modified strain energy density exhaustion model for creep-fatigue life prediction[J]. International Journal of Fatigue,2016,90:12-22. [100] OTHMAN A M,HAYHURST D R,DYSON B F. Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations[J]. Proceedings of the Royal Society A:Mathematical,1993,441(1912):343-358. [101] MUSTATA R,HAYHURST D R. Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565℃-675℃[J]. International Journal of Pressure Vessels & Piping,2005,82(5):363-372. [102] O'DONOGHUE P E,LEEN S B,BARRETT R A,et al. A physically-based creep damage model for effects of different precipitate types[J]. Materials Science & Engineering,A. Structural Materials:Properties,Misrostructure and Processing,2017,682:714-722. [103] ORUGANTI R,KARADGE M,SWAMINATHAN S. Damage mechanics-based creep model for 9-10%Cr ferritic steels[J]. Acta Materialia,2011,59(5):2145-2155. [104] ZHANG W,WANG X,CHEN H,et al. Microstructural damage mechanics-based model for creep fracture of 9% Cr steel under prior fatigue loading[J]. Theoretical and Applied Fracture Mechanics,2019,103:102269. [105] Payten W M,Dean D W,Snowden K U. Creep-fatigue prediction of low alloy ferritic steels using a strain energy based methodology[J]. ASME,2009:1403-1410. [106] KAN K,MURANSKY O,BENDEICH P J,et al. Assessment of creep damage models in the prediction of high-temperature creep behaviour of Alloy 617[J]. International Journal of Pressure Vessels and Piping,2019,177:103974. [107] LARSON F R. A time-temperature relationship for rupture and creep stresses[J]. Trans. ASME,1952,74:765-775. [108] MONKMAN F C. An empirical relationship between rupture life and minimum creep rate in creep rupture tests[C]//ASTM,1956,56:91-103. [109] ŠERUGA D,NAGODE M. Unification of the most commonly used time-temperature creep parameters[J]. Materials Science and Engineering:A,2011,528(6):2804-2811. [110] NIKBIN K,WEBSTER G. Creep-fatigue crack growth in a nickel-base superalloy[C]//Proceedings of 2nd International Conference on Creep and Fracture of Engineering Materials and Structures. 1984:1091-1104. [111] ZHAO Y,GONG J,YONG J,et al. Creep behaviours of Cr25Ni35Nb and Cr35Ni45Nb alloys predicted by modified theta method[J]. Materials Science and Engineering:A,2016,649:1-8. [112] 王国珍,轩福贞,涂善东. 高温结构蠕变裂尖拘束效应[J]. 力学进展,2017,47(1):122-149.WANG Guozhen,XUAN Fuzhen,TU Shantung. Recent progress in creep crack-tip constraint effect in high temperature structures[J]. Advances in Mechanics,47(1):122-149. [113] YAMAMOTO M,MIURA N,OGATA T. Effect of constraint on creep crack propagation of mod. 9Cr-1Mo steel weld joint[C]//Proceedings of the ASME Pressure Vessels and Piping Conference,2009,43697:1533-1539 [114] TAN J,WANG G,XUAN F,et al. Correlation of creep crack-tip constraint between axially cracked pipelines and test specimens[J]. International Journal of Pressure Vessels and Piping,2012,98:16-25. [115] BUDDEN P J,AINSWORTH R A. The effect of constraint on creep fracture assessments[J]. International Journal of Fracture,1999,97(1-4):237. [116] WANG G,LIU X,XUAN F Z,et al. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens[J]. International Journal of Solids and Structures,2010,47(1):51-57. [117] TAN J,WANG G,TU S,et al. Load-independent creep constraint parameter and its application[J]. Engineering Fracture Mechanics,2014,116:41-57. [118] MA H,WANG G,XUAN F,et al. Unified characterization of in-plane and out-of-plane creep constraint based on crack-tip equivalent creep strain[J]. Engineering Fracture Mechanics,2015,142:1-20. [119] LIU S,WANG G,TU S,et al. Creep crack growth prediction and assessment incorporating constraint effect for pressurized pipes with axial surface cracks[J]. Engineering Fracture Mechanics,2016,154:92-110. [120] ZHANG Y C,CHEN C,JIANG W,et al. Evaluation of the creep crack growth behavior in 9Cr-1Mo steel under different stress conditions[J]. International Journal of Pressure Vessels and Piping,2020,188:104174. [121] LUO Y,JIANG W,ZHANG W,et al. Notch effect on creep damage for Hastelloy C276-BNi2 brazing joint[J]. Materials & Design,2015,84:212-222. [122] WU D,XU L,ZHAI W,et al. Analysis of the constraint levels and the creep crack initiation times for pressurized pipes with long surface cracks[J]. Thin-Walled Structures,2020,153:106787. [123] 胡华彦,温建锋,吴蔚峰,等. 高温蠕变条件下表面裂纹扩展行为分析[J]. 机械工程学报,2021,56(24):40-50.HU Huayan,WEN Jianfeng,WU Weifeng,et al. Analysis of surface creep crack growth behavior under high temperature creep condition[J]. Journal of Mechanical Engineering,2020,56(24):40-50. [124] RCC-MRx. Design and construction rules for mechanical components of nuclear installations:High-temperature,research and fusion reactors,appendix A16[S]. Courbevoie:AFCEN,2018. [125] R5. Assessment procedure for the high temperature response of structures[S]. Gloucester:EDF Energy Nuclear Generation Ltd,2014. [126] BS 7910. Guidance on method for assessing the acceptability of flaws in metallic structure[S]. London:British Standards Institution,2019. [127] WANG X,ZHANG W,GONG J,et al. Experimental and numerical characterization of low cycle fatigue and creep fatigue behaviour of P92 steel welded joint[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(3):611-624. [128] ZHANG W,ZHANG T,WANG X,et al. Remaining creep properties and fracture behaviour of P92 steel welded joint under prior low cycle fatigue loading[J]. Journal of Materials Research and Technology,2020,9(4):7887-7899. [129] ZHANG W,ZHANG T,WANG X,et al. The correlation between prior fatigue damage and remaining creep properties in a high chromium steel welded joint[J]. Materials Science and Engineering:A,2020,790:139717. [130] 涂善东,巩建鸣. 焊接结构高温强度设计的研究进展[J]. 化工机械,1996,23(1):53-58.TU Shantung,GONG Jianming. Research progress of high-temperature strength design of welded structure[J]. Chemical Engineering & Machinery,1996,23(1):53-58. [131] 巩建鸣,涂善东,凌祥,等. 焊接对HK40高温炉管的蠕变损伤与断裂的影响[J]. 材料工程,2000(11):9-12.GONG Jianming,TU Shantung,LING Xiang,et al. Research of welding effect on creep damage of high temperature furnace tubes[J]. Journal of Materials Engineering,2000(11):9-12. [132] WANG H,WANG G,XUAN F,et al. Numerical investigation of ductile crack growth behavior in a dissimilar metal welded joint[J]. Nuclear Engineering and Design,2011,241(8):3234-3243. [133] WANG H,WANG G,XUAN F,et al. An experimental investigation of local fracture resistance and crack growth paths in a dissimilar metal welded joint[J]. Materials & Design,2013,44:179-189. [134] 姜勇,张佐,巩建鸣. Cr5Mo/A302异质焊接接头C扩散及其对高温蠕变寿命的影响[J]. 金属学报,2015,51(4):393-399.JIANG Yong,ZHANG Zuo,GONG Jianming. Carbon diffusion and its effect on high temperature creep life of Cr5Mo/A302 dissimilar welded joint[J]. Acta Metallurgica Sinica,2015,51(4):393-399. [135] 许乐,温建锋,涂善东. P92钢焊接接头蠕变损伤与裂纹扩展数值模拟[J]. 焊接学报,2019,40(8):80-88.XU Le,WEN Jianfeng,TU Shantung. Numerical simulations of creep damage and crack growth in P92 steel welded joints[J]. Transactions of the China Welding Institution,2019,40(8):80-88. [136] HAYHURST D R,WONG M T,VAKILI-TAHAMI F. The use of CDM analysis techniques in high temperature creep failure of welded structures[J]. Jsme International Journal,2002,45(1):90-97. [137] HAYHURST D R,VAKILI-TAHAMI R. Continuum damage mechanics predictions of creep damage initiation and growth in ferritic steel weldments in a medium bore branched pipe under constant pressure at 590℃ using a five-material weld model[J]. Proceedings Mathematical Physical & Engineering Sciences,2005,461(2060):2303-2326. [138] BOSCHERT S,ROSEN R. Digital twin-the simulation aspect[M]. Dundee:Mechatronic Futures. Springer,2016. [139] GRIEVES M. Digital twin:manufacturing excellence through virtual factory replication[J]. White Paper,2014,1:1-7. [140] KOBRYN P A,TUEGEL E J,BRANCH S M. Condition-based maintenance plus structural integrity (CBM+ SI) & the airframe digital twin[J]. USAF Air Force Research Laboratory,2011,88ABW:201101428. [141] SHAFTO M,CONROY M,DOYLE R,et al. Modeling,simulation,information technology & processing roadmap[M]. Washington,National Aeronautics and Space Administration,2012. [142] GENERAL E. Digital twin:Analytic engine for the digital power plant[R]. GE Power Digital Solutions,2016. [143] TAO F,ZHANG H,LIU A,et al. Digital twin in industry:State-of-the-art[J]. IEEE Transactions on Industrial Informatics,2019,15(4):2405-2415. [144] GLAESSGEN E,STARGEL D. The digital twin paradigm for future NASA and US Air Force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA,2012,1818. [145] YERATAPALLY S R,LESER P E,HOCHHALTER J D,et al. A digital twin feasibility study (Part I):Non-deterministic predictions of fatigue life in aluminum alloy 7075-T651 using a microstructure-based multi-scale model[J]. Engineering Fracture Mechanics,2020,228:106888. [146] TUEGEL E J,INGRAFFEA A R,EASON T G,et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering,2011,2011:1687-5966. [147] BIELEFELDT B,HOCHHALTER J,HARTL D. Computationally efficient analysis of SMA sensory particles embedded in complex aerostructures using a substructure approach[C]//ASME 2015 Conference on Smart Materials,Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers Digital Collection,2015. [148] LI C,MAHADEVAN S,LING Y,et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. Aiaa Journal,2017,55(3):930-941. [149] LIAO M,RENAUD G,BOMBARDIER Y. Airframe digital twin technology adaptability assessment and technology demonstration[J]. Engineering Fracture Mechanics,2019,225:106793. [150] ZAKRAJSEK A J,MALL S. The development and use of a digital twin model for tire touchdown health monitoring[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,and Materials Conference. 2017,863. [151] YU Y,FAN S,PENG G,et al. Study on application of digital twin model in product configuration management[J]. Aeronautical Manufacturing Technology,2017,7:41-45. [152] SEDIGHIANI K,DIEHL M,TRAKA K,et al. An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves[J]. International Journal of Plasticity,2020,134:102779. [153] KARVE P M,GUO Y,KAPUSUZOGLU B,et al. Digital twin approach for damage-tolerant mission planning under uncertainty[J]. Engineering Fracture Mechanics,2019,225:106766. [154] National Academies of Sciences E,MEDICINE. Advanced technologies for gas turbines[M]. California:National Academies Press,2020. [155] ZHANG X,GONG J G,XUAN F Z. A deep learning based life prediction method for components under creep,fatigue and creep-fatigue conditions[J]. International Journal of Fatigue,2021,148:106236. |
[1] | 吴吉展, 魏沛堂, 吴少杰, 刘怀举, 朱才朝. 航空齿轮钢滚动接触疲劳性能预测与表面完整性优化[J]. 机械工程学报, 2024, 60(8): 81-93. |
[2] | 张超, 周光辉, 李晶晶, 魏智博, 秦天宇. 面向航空复杂零件智能工艺规划的孪生工艺模型构建与应用研究[J]. 机械工程学报, 2024, 60(6): 32-43. |
[3] | 王跃飞, 王超, 许于涛, 孙睿, 肖锴, 王凯林. 边-云协同下智能制造单元作业的数字孪生任务调度方法[J]. 机械工程学报, 2024, 60(6): 137-152. |
[4] | 姜文涛, 刘晓明, 李培源, 陈海, 张煦松. 机械式真空快速切换开关机构多目标优化设计[J]. 机械工程学报, 2024, 60(6): 153-162. |
[5] | 刘达新, 王科, 刘振宇, 许嘉通, 谭建荣. 基于数据融合与知识推理的机器人装配单元数字孪生建模方法研究[J]. 机械工程学报, 2024, 60(5): 36-50. |
[6] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[7] | 石健, 刘冬, 王少萍. 基于数字孪生的机电液系统PHM关键技术综述[J]. 机械工程学报, 2024, 60(4): 66-81. |
[8] | 纪佳馨, 彭程, 项冲, 黄乐, 郭飞. 考虑变速条件的斯特封磨损寿命预测方法[J]. 机械工程学报, 2024, 60(3): 191-202. |
[9] | 张伟, 李如俊, 葛士涛, 彭艳. 基于内禀耗散理论的高周疲劳双尺度伤演分析[J]. 机械工程学报, 2024, 60(20): 120-133. |
[10] | 杨亮亮, 来孝楠, 何西旺, 李鹏, 郭正刚, 宋学官. 面向飞机机翼数字孪生的在线加速度积分方法[J]. 机械工程学报, 2024, 60(2): 342-355. |
[11] | 刘小峰, 张天瑀, 韦代平, 柏林, 陈兵奎. 复合材料基体裂纹损伤演化的自适应粒子滤波预测[J]. 机械工程学报, 2024, 60(18): 32-42. |
[12] | 高冲, 董丽虹, 王海斗, 刘彬, 吕晓仁. 整体加筋结构疲劳损伤研究进展[J]. 机械工程学报, 2024, 60(18): 116-127. |
[13] | 陈健, 孟义兴, 袁慎芳, 徐秋慧, 王卉. 融合导波监测的搭接结构裂纹扩展寿命孪生预测[J]. 机械工程学报, 2024, 60(16): 34-42. |
[14] | 赵雷, 张利宾, 宋恺, 徐连勇, 韩永典, 郝康达. 新型马氏体耐热钢耦合控制下蠕变-疲劳循环变形研究[J]. 机械工程学报, 2024, 60(16): 118-129. |
[15] | 刘岳开, 王天杨, 褚福磊. 基于低延迟可解释性深度学习的复杂旋转机械关键部件知识嵌入与诊断方法研究[J]. 机械工程学报, 2024, 60(12): 107-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||