[1] 付宜利, 李显凌, 梁兆光. 基于形状记忆合金的自主导管导向机器人设计[J]. 机械工程学报, 2008, 44(9):76-82. FU Yili, LI Xinalin, LIANG Zhaoguang. Design of self-guided catheter robot based on shape memory alloy[J]. Journal of Mechanical Engineering, 2008, 44(9):76-82. [2] CIANCHETTI M, RANZANI T, GERBONI G, et al. Soft robotics technologies to address shortcomings in today's minimally invasive surgery:The STIFF-FLOP approach[J]. Soft Robotics, 2014, 1(2):122-131. [3] AWAD L N, BAE J, O'DONNELL K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science Translational Medicine, 2017, 9(400):i9084. [4] ZHANG J, WANG H, TANG J, et al. Modeling and design of a soft pneumatic finger for hand rehabilitation[C]//IEEE International Conference on Information & Automation, August 8-10, 2015, Lijiang, Yunnan, China. New York:IEEE, 2015, 2460-2465. [5] TOLLEY M T, SHEPHERD R F, MOSADEGH B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3):213-223. [6] METHENITIS G, HENNES D, IZZO D, et al. Novelty search for soft robotic space exploration[C]//17th Genetic and Evolutionary Computation Conference (GECCO), July 11-15, Madrid, SAN MARINO. New York:ASSOC COMPUTING MACHINER, 2015, 193-200. [7] GALLOWAY K C, BECKER K P, PHILLIPS B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1):23-33. [8] WANG Yueping, YANG Xingbang, CHEN Yufeng, et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish[J]. Science Robotics. 2017, 2(10):eaan8072. [9] SHEPHERD R F, ILIEVSKI F, CHOI W, et al. Multigait soft robot[J]. Proceedings of the National Academy of Sciences. 2011, 108(51):20400-20403. [10] MAO Shixin, DONG Erbo, JIN Hu, et al. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs[J]. Journal of Bionic Engineering, 2014, 11(3):400-411. [11] GU Guoying, ZOU Jiang, ZHAO Ruike, et al. Soft wall-climbing robots[J]. Soft Robots, 2018, eat28874:1-12. [12] GAFFORD J, DING Y, HARRIS A, et al. Shape deposition manufacturing of a soft, atraumatic, deployable surgical grasper1[J]. Journal of Medical Devices. 2014, 8(3):030927. [13] CHEN Zhe, LIANG Xueya, WU Tonghao, et al. Pneumatically actuated soft robotic arm for adaptable grasping[J]. Acta Mechanica Solida Sinica, 2018, 31(5):608-622. [14] YUK H, ZHANG T, PARADA G A, et al. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures[J]. Nature Communications, 2016, 7(1):12028. [15] WEHNER M, TRUBY R L, FITZGERALD D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451-455. [16] MUTLU R, ALICI G, PANHUIS M, et al. 3D printed flexure hinges for soft monolithic prosthetic fingers[J]. Soft Robotics, 2016, 3(3):120-133. [17] ZHANG Di, CHI Baihong, LI Bowen, et al. Fabrication of highly conductive graphene flexible circuits by 3D printing[J]. Synthetic Metals, 2016, 217:79-86. [18] ZHOU Luyu, GAO Qing, ZHAN Junfu, et al. Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots[J]. ACS Applied Materials & Interfaces, 2018, 10(27):23208-23217. [19] JAKUS A E, RUTZ A L, JORDAN S W, et al. Hyperelastic "bone":A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial[J]. Sci. Transl. Med., 2016, 8(358):127-358. [20] THERRIAULT D, WHITE S, LEWIS J A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly[J]. Nature, 2003, 5(2):265-347. [21] QI Xing, PEI Peng, ZHU Min, et al. Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo[J]. Scientific Reports, 2017, 7(1):1-12. [22] ZHOU Luyu, GAO Qing, FU Jianzhong, et al. Multimaterial 3D printing of highly stretchable silicone elastomers[J]. ACS Applied Materials & Interfaces. 2019, 11(26):23573-23583. [23] CAI Kunpeng, SUN Jingbo, LI Qi, et al. Direct-writing construction of layered meshes from nanoparticles-vaseline composite inks:Rheological properties and structures[J]. Applied Physics A, 2011, 102(2):501-507. [24] YIRMIBESOGLU O D, MORROW J, WALKER S, et al. Direct 3D printing of silicone elastomer soft robots and their performance comparison with molded counterparts[C]//2018 IEEE International Conference on Soft Robotics (RoboSoft), April 24-28, 2018, Livorno Italy. New York:IEEE, 2018, 295-302. [25] SCHAFFNER M, FABER J A, PIANEGONDA L, et al. 3D printing of robotic soft actuators with programmable bioinspired architectures[J]. Nature Communications, 2018, 9(1):1-9. [26] DERBY B. Inkjet printing of functional and structural materials:Fluid property requirements, feature stability, and resolution[J]. Annual Review of Materials Research, 2010, 40(1):395-414. [27] ZHANG Yuanfang, ZHANG Ninbin, HARDIK H, et al. Fast-response, stiffness tunable soft actuator by hybrid multimaterial 3D printing[J]. Advanced Functional Materials, 2019, 29(15):1806698. [28] BARTLETT N W, TOLLEY M T, OVERVELDE J T, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244):161-165. [29] SIRRINE J M, MEENAKSHISUNDARAM V, MOON N G, et al. Functional siloxanes with photo-activated, simultaneous chain extension and crosslinking for lithography-based 3D printing[J]. Polymer, 2018, 152:25-34. [30] ZHAO Tingting, YU Ran, LI Xinpan, et al. A comparative study on 3D printed silicone-epoxy/acrylate hybrid polymers via pure photopolymerization and dual-curing mechanisms[J]. Journal of Materials Science, 2019, 54(6):5101-5111. [31] TUMBLESTON J R, SHIRVANYANTS D, ERMOSHKIN N, et al. Continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228):1349-1352. [32] KELLY B E, BHATTACHARYA I, HEIDARI H, et al. Volumetric additive manufacturing via tomographic reconstruction[J]. Science, 2019, 363(6431):1075. [33] SCHARFF R, DOUBROVSKI E L, POELMAN W A, et al. Towards behavior design of a 3D-printed soft robotic hand[C]//Soft Robotics Week-Trends, Applications and Challenges Biosystems and Biorobotics, April 25-30, 2016, Livorno, ITALY. Switzerland:Springer Int Publishing A, 2017, 23-29. [34] HARDIN J O, OBER T J, VALENTINE A D, et al. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks[J]. Advanced Materials, 2015, 27(21):3279-3284. [35] KUANG Xiao, ROACH D J, WU Jiangtao, et al. Advances in 4D printing:Materials and applications[J]. Advanced Functional Materials, 2019, 2(29):1805290-1805291. [36] GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters, 2013, 103(13):131901. [37] KIM Y, YUK H, ZHAO Ruike, et al. Printing ferromagnetic domains for untethered fast-transforming soft materials[J]. Nature, 2018, 558(7709):274-279. [38] GE Q, SAKHAEI A H, LEE H, et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports, 2016, 6(1):31110. [39] GLADMAN A S, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing[J]. Nature Materials, 2016, 15:413-418. [40] NADGORNY M, XIAO Zeyun, CHEN Chao, et al. Three-dimensional printing of pH-responsive and functional polymers on an affordable desktop printer[J]. ACS Applied Materials & Interfaces, 2016, 8(42):28946-28954. [41] MUTH J T, VOGT D M, TRUBY R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers[J]. Advanced Materials, 2014, 26(36):6307-6312. [42] MOSADEGH B, POLYGERINOS P, KEPLINGER C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15):2163-2170. [43] DEIMEL R, BROCK O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. The International Journal of Robotics Research, 2016, 35(1-3):161-185. [44] POLYGERINOS P, WANG Zhen, GALLOWAY K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73:135-143. [45] 杭观荣, 王振龙, 李健, 等. 基于柔性鳍单元的尾鳍推进微型机器鱼设计研究[J]. 机器人, 2008(2):171-175. HANG Guanrong, WANG Zhenlong, LI Jian, et al. Design and research of tail fin propulsion mini robot fish based on flexible fin unit[J]. Robot, 2008(2):171-175. [46] KIM H, SONG S H, AHN S. A turtle-like swimming robot using a smart soft composite (SSC) structure[J]. Smart Materials and Structures, 2013, 22(1):14007. [47] SHINTAKE J, SHEA H, FLOREANO D. Biomimetic underwater robots based on dielectric elastomer actuators[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 9-14, 2016, Daejeon, Korea. New York:IEEE, 2016, 4957-4962. [48] ZHAO Jianwen, NIU Junyang, MCCOUL D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers:design and experiment[J]. Meccanica, 2015, 50(11):2815-2824. [49] NAKAGAWA H, HARA Y, MAEDA S, et al. A novel design of nanofibrous gel actuator by electrospinning[C]//IEEE International Conference on Nanotechnology, August 17-20, 2010, KINTEX, Korea. New York:IEEE, 2010, 1135-1138. [50] SHEPHERD R F, STOKES A A, FREAKE J, et al. Using explosions to power a soft robot[J]. Angewandte Chemie International Edition, 2013, 52(10):2892-2896. [51] YANG Yang, CHEN Yonghua, LI Yingtian, et al. Bioinspired robotic fingers based on pneumatic actuator and 3D printing of smart material[J]. Soft Robotics, 2017, 4(2):147-162. [52] YEO J C, YAP H K, XI W, et al. Flexible and stretchable strain sensing actuator for wearable soft robotic applications[J]. Advanced Materials Technologies, 2016, 1(3):1600018. [53] LU Nanshu, LU Chi, YANG Shixuan, et al. Highly sensitive skin-mountable strain gauges based entirely on elastomers[J]. Advanced Functional Materials, 2012, 22(19):4044-4050. [54] PARK Y L, CHEN B R, WOOD R J. Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors[J]. Sensors Journal, IEEE, 2012, 8(12):2711-2718. [55] HAMMOND F, MENGUC Y, WOOD R J. Toward a modular soft sensor-embedded glove for human hand motion and tactile pressure measurement[C]//2014 IEEE/RSJ International Conference onIntelligent Robots and Systems, September 14-18, 2014, Chicago, IL, USA. New York:IEEE, 2014, 4000-4007. [56] MAJIDI C, KRAMER R, WOOD R J. A non-differential elastomer curvature sensor for softer-than-skin electronics[J]. Smart Materials and Structures, 2011, 20(10):105017. [57] ODENT J, WALLIN T J, PAN W, et al. Highly elastic, transparent, and conductive 3d-printed ionic composite hydrogels[J]. Advanced Functional Materials, 2017, 27(33):1701807. [58] ROBINSON S S, O'BRIEN K W, ZHAO Huichan, et al. Integrated soft sensors and elastomeric actuators for tactile machines with kinesthetic sense[J]. Extreme Mechanics Letters, 2015, 5:47-53. [59] LORANG D J, TANAKA D, SPADACCINI C M, et al. Photocurable liquid core-fugitive shell printing of optical waveguides[J]. Advanced Materials, 2011, 23(43):5055-5058. [60] TAWK C, PANHUIS I H M, SPINKS G M, et al. Bioinspired 3D printable soft vacuum actuators for locomotion robots, grippers and artificial muscles[J]. Soft Robotics, 2018, 5(6):685-694. [61] ROELS E, TERRYN S, BRANCART J, et al. Additive manufacturing for self-healing soft robots[J]. Soft Robotics, 2020:1-13. [62] TYAGI M, SPINKS G M, JAGER E W H. 3D Printing microactuators for soft microrobots[J]. Soft Robotics, 2020, 00(00):1-9. [63] JEON S, HOSHIAR A K, KIM K, et al. A magnetically controlled soft microrobot steering a guidewire in a three-dimensional phantom vascular network[J]. Soft Robotics, 2019, 6(1):54-68. [64] ZATOPA A, WALKER S, MENGUC Y. Fully soft 3D-printed electroactive fluidic valve for soft hydraulic robots[J]. Soft Robotics, 2018, 5(3):258-271. [65] SORENI-HARARI M, PIERRE R S, MCCUE C, et al. Multimaterial 3D printing for microrobotic mechanisms[J]. Soft Robotics, 2020, 7(1):59-67. [66] ZHANG Yuanfang, NG C J X, CHEN Zhe, et al. Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing[J]. Advanced Materials Technologies, 2019, 4(10):1900427. [67] JACKSON J A, MESSNER M C, DUDUKOVIC N A, et al. Field responsive mechanical metamaterials[J]. Sci. Adv., 2018, 4(12):u6419. [68] MACCURDY R, KATZSCHMANN R, KIM Y, et al. Printable hydraulics:A method for fabricating robots by 3D co-printing solids and liquids[C]//IEEE International Conference on Robotics and Automation ICRA, May 16-21, 2016, Royal Inst Technol, Ctr Autonomous Syst, Stockholm, Sweden.New York:IEEE, 2016, 3878-3885. [69] WALLIN T J, PIKUL J, SHEPHERD R F. 3D printing of soft robotic systems[J]. Nature Reviews Materials, 2018, 3(6):84-100. [70] CHEN Tingting, BAKHSHI H, LIU Li, et al. Combining 3D printing with electrospinning for rapid response and enhanced designability of hydrogel actuators[J]. Advanced Functional Materials, 2018, 28(19):1800514. |