[1] 雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018, 54(5):94-104. LEI Yagu, JIA Feng, KONG Detong, et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018, 54(5):94-104. [2] SHAO Haidong, JIANG Hongkai, ZHANG Haizhou, et al. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2727-2736. [3] 雷亚国,贾峰,周昕,等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21):49-56. LEI Yaguo, JIA Feng, ZHOU Xin, et al. A deep learningbased method for machinery health monitoring with big data[J]. Journal of Mechanical Engineering, 2015, 51(21):49-56. [4] SHAO Haidong, JIANG Hongkai, ZHAO Huiwei, et al. A novel deep autoencoder feature learning method for rotating machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2017, 95:187-204. [5] SHAO Haidong, JIANG Hongkai, ZHAO Huiwei, et al. An enhancement deep feature fusion method for rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2017, 119:200-220. [6] ZHAO Rui, YAN Ruqiang, CHEN Zhenghua, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115:213-237. [7] 姜洪开,邵海东,李兴球. 基于深度学习的飞行器智能故障诊断方法[J]. 机械工程学报, 2019, 55(7):27-34. JIANG Hongkai, SHAO Haidong, LI Xingqiu. Deep learning theory with application in intelligent fault diagnosis of aircraft[J]. Journal of Mechanical Engineering, 2019, 55(7):27-34. [8] 雷亚国,杨彬,杜兆钧,等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报, 2019, 5(7):1-8. LEI Yaiguo, YANG Bin, DU Zhaojun, et al. Deep transfer diagnosis method for machinery in big data era[J]. Journal of Mechanical Engineering, 2019, 55(7):1-8. [9] PAN S J, YANG Qiang. A Survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10):1345-1359. [10] 陈超,沈飞,严如强. 改进LSSVM迁移学习方法的轴承故障诊断[J]. 仪器仪表学报, 2017, 38(1):33-40. CHEN Chao, SHEN Fei, YAN Ruqiang. Enhanced least squares support vector machine-based transfer learning strategy for bearing fault diagnosis[J]. Chinese Journal of Scientific Instrument, 2017, 38(1):33-40. [11] LU Weining,LIANG Bin,CHEN Yu,et al. Deep model based domain adaptation for fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3):2296-2305. [12] WEN Long, GAO Liang, LI Xinyu. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(1):136-144. [13] 陈雪峰,訾艳阳.智能运维与健康管理[M]. 北京:机械工业出版社, 2018. CHEN Xuefeng, ZI Yanyang. Intelligent maintenance and health management[J]. Beijing:China Machine Press, 2018. [14] VINOD N, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]//International Conference on Machine Learning in Haifa, Israel, June 21-June 24, 2010:807-814. [15] LU Lu, SHIN Y, SU Yanhui, et al. Dying ReLU and initialization:Theory and numerical examples[EB/OL].[2019-03-15]. Cornell University Library 2019, http://export.arxiv.org/abs/1903.06733. [16] KLAMBAUER G, UNTERTHINER T, MAYR A, et al. Self-normalizing neural networks[EB/OL].[2017-09-07]. Cornell University Library 2017, https://arxiv.org/abs/1706.02515v4. [17] HOSSEINI-ASL E, ZURADA J M, NASRAOUI O. Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints[EB/OL].[2016-01-12]. Cornell University Library 2016, https://arxiv.org/abs/1601.02733. [18] LEI Yaguo, HE Zhengjia, ZI Yanyang. EEMD method and WNN for fault diagnosis of locomotive roller bearings[J]. Expert Systems with Applications, 2011, 38(6):7334-7341. [19] QIAN Weiwei, LI Shunming, YI Pengxing, et al. A novel transfer learning method for robust fault diagnosis of rotating machines under variable working conditions[J]. Measurement, 2019, 138:514-525. |