机械工程学报 ›› 2020, Vol. 56 ›› Issue (17): 91-107.doi: 10.3901/JME.2020.17.091
陈是扦1,2, 彭志科2, 周鹏2
收稿日期:
2019-06-26
修回日期:
2019-11-06
出版日期:
2020-09-05
发布日期:
2020-10-19
通讯作者:
彭志科(通信作者),男,1974年出生,博士,教授,博士研究生导师。主要研究方向为设备故障诊断与智能运维、信号处理与大数据分析、振动分析与控制和非线性动力学等。E-mail:z.peng@sjtu.edu.cn
作者简介:
陈是扦,男,1991年出生,博士,副研究员。主要研究方向为信号处理、机械故障诊断。E-mail:chenshiqian@swjtu.edu.cn
基金资助:
CHEN Shiqian1,2, PENG Zhike2, ZHOU Peng2
Received:
2019-06-26
Revised:
2019-11-06
Online:
2020-09-05
Published:
2020-10-19
摘要: 重大装备制造业是国民经济的支柱,也是关系到国家安全的战略性产业,而重大机械装备的运行安全一直是备受关注的焦点。机械设备由于工作环境恶劣、工况复杂,其关键部件容易受损,导致设备性能退化,甚至造成设备崩溃。健康状态监测和故障诊断是保证重大机械装备安全运行的必要手段。通过信号分解可以抑制机械振动信号中的环境噪声和无关成分干扰,从而有效提取故障特征,因此信号分解在机械故障诊断中发挥着关键作用。目前,围绕信号分解理论及其在机械故障诊断中的应用,国内外学者开展了大量研究工作。首先,从时域、频域和时频域三个方面系统综述了国内外学者对信号分解理论的研究现状;其次,从轴承、齿轮和转子碰摩三个方面详细梳理了信号分解在机械故障诊断中的应用研究现状;最后,归纳总结了信号分解及其在机械故障诊断应用中面临的挑战。
中图分类号:
陈是扦, 彭志科, 周鹏. 信号分解及其在机械故障诊断中的应用研究综述[J]. 机械工程学报, 2020, 56(17): 91-107.
CHEN Shiqian, PENG Zhike, ZHOU Peng. Review of Signal Decomposition Theory and Its Applications in Machine Fault Diagnosis[J]. Journal of Mechanical Engineering, 2020, 56(17): 91-107.
[1] 王国彪,何正嘉,陈雪峰,等. 机械故障诊断基础研究"何去何从"[J]. 机械工程学报,2013,49(1):63-72. WANG Guobiao,HE Zhengjia,CHEN Xuefeng,et al. Basic research on machinery fault diagnosis-what is the prescription[J]. Journal of Mechanical Engineering,2013,49(1):63-72. [2] 王诗彬. 机械故障诊断的匹配时频分析原理及其应用研究[D]. 西安:西安交通大学,2015. WANG Shibin. Research on matching time-frequency analysis theory of machinery fault diagnosis and appli-cations[D]. Xi'an:Xi'an Jiaotong University,2015. [3] CHEN Z,SHAO Y. Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth[J]. Engineering Failure Analysis,2011,18(8):2149-2164. [4] WANG Y,HE Z,ZI Y. A demodulation method based on improved local mean decomposition and its application in rub-impact fault diagnosis[J]. Measurement Science and Technology,2009,20(2):025704. [5] HUANG N E,SHEN Z,LONG S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London A:Mathematical,Physical and Engineering Sciences,1998,454:903-995. [6] LEI Y,LIN J,HE Z,et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing,2013,35(1-2):108-126. [7] LIANG H,LIN Q,CHEN J. Application of the empirical mode decomposition to the analysis of esophageal manometric data in gastroesophageal reflux disease[J]. IEEE Transactions on Biomedical Engineering,2005,52(10):1692-1701. [8] MOLLA M K I,HIROSE K. Single-mixture audio source separation by subspace decomposition of Hilbert spec-trum[J]. IEEE Transactions on Audio,Speech,and Language Processing,2007,15(3):893-900. [9] WU Z,HUANG N E. Ensemble empirical mode decom-position:a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis,2009,1(01):1-41. [10] FELDMAN M. Analytical basics of the EMD:Two harmonics decomposition[J]. Mechanical Systems and Signal Processing,2009,23(7):2059-2071. [11] RILLING G,FLANDRIN P. One or two frequencies? The empirical mode decomposition answers[J]. IEEE Transac-tions on Signal Processing,2008,56(1):85-95. [12] FLANDRIN P,RILLING G,GONCALVES P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters,2004,11(2):112-114. [13] XUAN B,XIE Q,PENG S. EMD sifting based on bandwidth[J]. IEEE Signal Processing Letters,2007,14(8):537-540. [14] ROY A,DOHERTY J F. Raised cosine filter-based empirical mode decomposition[J]. IET Signal Processing,2011,5(2):121-129. [15] CHEN Q,HUANG N,RIEMENSCHNEIDER S,et al. A B-spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics,2006,24(1-4):171-195. [16] DELECHELLE E,LEMOINE J,NIANG O. Empirical mode decomposition:An analytical approach for sifting process[J]. IEEE Signal Processing Letters,2005,12(11):764-767. [17] LI H,LI Z,MO W. A time varying filter approach for empirical mode decomposition[J]. Signal Processing,2017,138:146-158. [18] SMITH J S. The local mean decomposition and its application to EEG perception data[J]. Journal of the Royal Society Interface,2005,2(5):443-454. [19] FREI M G,OSORIO I. Intrinsic time-scale decomposi-tion:time-frequency-energy analysis and real-time filtering of non-stationary signals[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2006,463(2078):321-342. [20] GILLES J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing,2013,61(16):3999-4010. [21] LIN L,WANG Y,ZHOU H. Iterative filtering as an alternative algorithm for empirical mode decomposition[J]. Advances in Adaptive Data Analysis,2009,1(4):543-560. [22] WANG Y,WEI G,YANG S. Iterative filtering decomposition based on local spectral evolution kernel[J]. Journal of Scientific Computing,2012,50(3):629-664. [23] CICONE A,LIU J,ZHOU H. Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis[J]. Applied and Computational Harmonic Analysis,2016,41(2):384-411. [24] YANG D,WANG B,CAI G,et al. Oscillation mode analysis for power grids using adaptive local iterative filter decomposition[J]. International Journal of Electrical Power & Energy Systems,2017,92:25-33. [25] AN X. Local rub-impact fault diagnosis of a rotor system based on adaptive local iterative filtering[J]. Transactions of the Institute of Measurement and Control,2017,39(5):748-753. [26] AN X,ZENG H,LI C. Demodulation analysis based on adaptive local iterative filtering for bearing fault diagnosis[J]. Measurement,2016,94:554-560. [27] FELDMAN M. Time-varying vibration decomposition and analysis based on the Hilbert transform[J]. Journal of Sound and Vibration,2006,295:518-530. [28] GIANFELICI F,BIAGETTI G,CRIPPA P,et al. Multicomponent AM-FM representations:an asympto-tically exact approach[J]. IEEE Transactions on Audio,Speech,and Language Processing,2007,15(3):823-837. [29] MALLAT S G,ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Trans. on Signal Processing,1993,41(12):3397-3415. [30] TROPP J A,GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory,2007,53(12):4655-4666. [31] REBOLLONEIRA L,LOWE D. Optimized orthogonal matching pursuit approach[J]. IEEE Signal Processing Letters,2002,9(4):137-140. [32] QIAN S,CHEN D. Signal representation using adaptive normalized Gaussian functions[J]. Signal Processing,1994,36(1):1-11. [33] WANG Y. Seismic time-frequency spectral decomposition by matching pursuit[J]. Geophysics,2007,72(1):V13-V20. [34] 杨扬. 参数化时频分析理论、方法及其在工程信号分析中的应用[D]. 上海:上海交通大学,2013. YANG Yang. Theory,methodology of parameterized time-frequency analysis and its application in engineering signal processing[D]. Shanghai:Shanghai Jiao Tong University,2013. [35] DURKA P J,IRCHA D,BLINOWSKA K J. Stochastic time-frequency dictionaries for matching pursuit[J]. IEEE Transactions on Signal Processing,2001,49(3):507-510. [36] BULTAN A. A four-parameter atomic decomposition of chirplets[J]. IEEE Transactions on Signal Processing,1999,47(3):731-745. [37] PAPANDREOU-SUPPAPPOLA A, SUPPAPPOLA S B. Analysis and classification of time-varying signals with multiple time-frequency structures[J]. IEEE Signal Processing Letters,2002,9(3):92-95. [38] CHEN S,DONOHO D L,SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review,2001,43(1):129-159. [39] CANDES E J,TAO T. Near-optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Transactions on Information Theory,2006,52(12):5406-5425. [40] BRUCKSTEIN A M,DONOHO D L,ELAD M. From sparse solutions of systems of equations to sparse modeling of signals and images[J]. SIAM Review,2009,51(1):34-81. [41] 张晗,杜朝辉,方作为,等. 基于稀疏分解理论的航空发动机轴承故障诊断[J]. 机械工程学报,2015,51(1):97-105. ZHANG Han,DU Zhaohui,FANG Zuowei,et al. Sparse decomposition based aero-engine's bearing fault diagnosis[J]. Journal of Mechanical Engineering,2015,51(1):97-105. [42] 樊薇,李双,蔡改改,等. 瞬态成分Laplace小波稀疏表示及其轴承故障特征提取应用[J]. 机械工程学报,2015,51(15):110-118. FAN Wei,LI Shuang,CAI Gaigai,et al. Sparse representation for transients in laplace wavelet basis and its application in feature extraction of bearing fault[J]. Journal of Mechanical Engineering,2015,51(15):110-118. [43] HOU T Y,SHI Z. Adaptive data analysis via sparse time-frequency representation[J]. Advances in Adaptive Data Analysis, 2011, 3(01n02):1-28. [44] HOU T Y,SHI Z. Data-driven time-frequency analysis[J]. Applied and Computational Harmonic Analysis,2013,35(2):284-308. [45] HOU T Y,SHI Z. Sparse time-frequency representation of nonlinear and nonstationary data[J]. Science China-Mathematics,2013,56(12):2489-2506. [46] HOU T Y,SHI Z. Sparse time-frequency decomposition based on dictionary adaptation[J]. Philosophical Transactions of the Royal Society A,2016,374(2065):20150192. [47] HOU T Y,SHI Z,TAVALLALI P. Convergence of a data-driven time-frequency analysis method[J]. Applied and Computational Harmonic Analysis,2014,37(2):235-270. [48] PENG S,HWANG W. Adaptive signal decomposition based on local narrow band signals[J]. IEEE Transactions on Signal Processing,2008,56(7):2669-2676. [49] PENG S,HWANG W. Null space pursuit:an operator-based approach to adaptive signal separation[J]. IEEE Transactions on Signal Processing,2010,58(5):2475-2483. [50] HU X,PENG S,HWANG W L. Adaptive integral operators for signal separation[J]. IEEE Signal Processing Letters,2015,22(9):1383-1387. [51] GUO B,PENG S,HU X,et al. Complex-valued differential operator-based method for multi-component signal separation[J]. Signal Processing,2017,132:66-76. [52] CHEN S,PENG Z,YANG Y,et al. Intrinsic chirp component decomposition by using Fourier series representation[J]. Signal Processing,2017,137:319-327. [53] CHEN S,DONG X,PENG Z,et al. Nonlinear chirp mode decomposition:A variational method[J]. IEEE Transactions on Signal Processing, 2017,65(22):6024-6037. [54] CHEN S,YANG Y,PENG Z,et al. Adaptive chirp mode pursuit:Algorithm and applications[J]. Mechanical Systems and Signal Processing,2019,116:566-584. [55] CHEN S,DONG X,XIONG Y,et al. Nonstationary signal denoising using an envelope-tracking filter[J]. IEEE/ASME Transactions on Mechatronics,2018,23(4):2004-2015. [56] CHEN S,DONG X,XING G,et al. Separation of overlapped non-stationary signals by ridge path regrou-ping and intrinsic chirp component decomposition[J]. IEEE Sensors Journal,2017,17(18):5994-6005. [57] DONG X,CHEN S,XING G,et al. Doppler frequency estimation by parameterized time-frequency transform and phase compensation technique[J]. IEEE Sensors Journal,2018,18(9):3734-3744. [58] YIN W,YANG X,LI L,et al. HEAR:approach for heartbeat monitoring with body movement compensation by IR-UWB radar[J]. Sensors,2018,18(9):3077. [59] GUO W,JIANG X,LI N,et al. A coarse TF ridge-guided multi-band feature extraction method for bearing fault diagnosis under varying speed conditions[J]. IEEE Access,2019,7:18293-18310. [60] MALLAT S. A wavelet tour of signal processing[M]. San Diego:Academic Press,1998. [61] AKANSU A N,HADDAD R A. Multiresolution signal decomposition:Transforms,subbands,and wavelets[M]. Boston:Academic Press,1992. [62] 祝文颖,冯志鹏. 基于改进经验小波变换的行星齿轮箱故障诊断[J]. 仪器仪表学报,2016,37(10):2193-2201. ZHU Wenying,FENG Zhipeng. Fault diagnosis of planetary gearbox based on improved empirical wavelet transform[J]. Chinese Journal of Scientific Instrument,2016,37(10):2193-2201. [63] ZHENG J,PAN H,YANG S,et al. Adaptive parame-terless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis[J]. Signal Processing,2017,130:305-314. [64] HU Y,LI F,LI H,et al. An enhanced empirical wavelet transform for noisy and non-stationary signal processing[J]. Digital Signal Processing,2017,60:220-229. [65] DRAGOMIRETSKIY K,ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing,2014,62(3):531-544. [66] LAHMIRI S. A variational mode decompoisition approach for analysis and forecasting of economic and financial time series[J]. Expert Systems with Applications,2016,55:268-273. [67] 于四伟. 基于自适应稀疏反演的地震数据重构[D]. 哈尔滨:哈尔滨工业大学,2017. YU Siwei. Seismic data reconstruction based on adaptive sparse inversion[D]. Harbin:Harbin Institute of Techno-logy,2017. [68] TRIPATHY R,SHARMA L,DANDAPAT S. Detection of shockable ventricular arrhythmia using variational mode decomposition[J]. Journal of Medical Systems,2016,40(4):79. [69] 陈东宁,张运东,姚成玉,等. 基于FVMD多尺度排列熵和GK模糊聚类的故障诊断[J]. 机械工程学报,2018,54(14):16-27. CHEN Dongning,ZHANG Yundong,YAO Chengyu,et al. Fault diagnosis based on FVMD multi-scale permutation entropy and GK fuzzy clustering[J]. Journal of Mechanical Engineering,2018,54(14):16-27. [70] OLHEDE S,WALDEN A T. A generalized demodulation approach to time-frequency projections for multicomp-onent signals[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2005,461(2059):2159-2179. [71] CHENG J,YANG Y,YU D. Application of the improved generalized demodulation time-frequency analysis method to multi-component signal decomposition[J]. Signal Processing,2009,89(6):1205-1215. [72] FENG Z,CHU F,ZUO M J. Time-frequency analysis of time-varying modulated signals based on improved energy separation by iterative generalized demodu-lation[J]. Journal of Sound and Vibration,2011,330(6):1225-1243. [73] CHEN X,FENG Z. Iterative generalized time-frequency reassignment for planetary gearbox fault diagnosis under nonstationary conditions[J]. Mechanical Systems and Signal Processing,2016,80:429-444. [74] YANG Y,DONG X,PENG Z,et al. Component extraction for non-stationary multi-component signal using parameterized de-chirping and band-pass filter[J]. IEEE Signal Processing Letters,2015,22(9):1373-1377. [75] YANG Y,PENG Z,DONG X,et al. Application of parameterized time-frequency analysis on multicom-ponent frequency modulated signals[J]. IEEE Transactions on Instrumentation and Measurement,2014,63(12):3169-3180. [76] QIAN S,CHEN D. Joint time-frequency analysis[J]. IEEE Signal Processing Magazine,1999,16(2):52-67. [77] DAUBECHIES I,LU J,WU H. Synchrosqueezed wavelet transforms:an empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis,2011,30(2):243-261. [78] MEIGNEN S,OBERLIN T,MCLAUGHLIN S. A new algorithm for multicomponent signals analysis based on synchrosqueezing:with an application to signal sampling and denoising[J]. IEEE Transactions on Signal Processing,2012,60(11):5787-5798. [79] AUGER F,FLANDRIN P,LIN Y,et al. Time-frequency reassignment and synchrosqueezing:An overview[J]. IEEE Signal Processing Magazine,2013,30(6):32-41. [80] AUGER F,FLANDRIN P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing,1995,43(5):1068-1089. [81] 陈小旺,冯志鹏,LIANG M. 基于迭代广义同步压缩变换的时变工况行星齿轮箱故障诊断[J]. 机械工程学报,2015,51(1):131-137. CHEN Xiaowang,FENG Zhipeng,LIANG M. Planetary gearbox fault diagnosis under time-variant conditions based on iterative generalized synchrosqueezing transform[J]. Journal of Mechanical Engineering,2015,51(1):131-137. [82] WU H T,CHAN Y H,LIN Y T,et al. Using synchros-queezing transform to discover breathing dynamics from ECG signals[J]. Applied and Computational Harmonic Analysis,2014,36(2):354-359. [83] AMEZQUITA-SANCHEZ J P,ADELI H. Synchros-queezed wavelet transform-fractality model for locating, detecting, and quantifying damage in smart highrise building structures[J]. Smart Materials and Structures,2015,24(6):065034. [84] THAKUR G,WU H T. Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples[J]. SIAM Journal on Mathematical Analysis,2011,43(5):2078-2095. [85] THAKUR G,BREVDO E,FUČKAR N S,et al. The synchrosqueezing algorithm for time-varying spectral analysis:robustness properties and new paleoclimate applications[J]. Signal Processing,2013,93(5):1079-1094. [86] HUANG Z,ZHANG J,ZHAO T,et al. Synchrosqueezing S-transform and its application in seismic spectral decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(2):817-825. [87] LI C,LIANG M. A generalized synchrosqueezing transform for enhancing signal time-frequency representation[J]. Signal Processing,2012,92(9):2264-2274. [88] WANG S,CHEN X,CAI G,et al. Matching demodula-tion transform and synchrosqueezing in time-frequency analysis[J]. IEEE Transactions on Signal Processing,2014,62(1):69-84. [89] MEIGNEN S,PHAM D H,MCLAUGHLIN S. On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[J]. IEEE Transactions on Signal Processing,2017,65(8):2093-2103. [90] OBERLIN T,MEIGNEN S,PERRIER V. Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[J]. IEEE Transactions Signal Processing,2015,63(5):1335-1344. [91] PHAM D H,MEIGNEN S. High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal[J]. IEEE Transactions on Signal Processing,2017,65(12):3168-3178. [92] LIN C Y,SU L,WU H T. Wave-shape function analysis:when cepstrum meets time-frequency analysis[J]. Journal of Fourier Analysis and Applications,2016:1-55. [93] DAUBECHIES I,WANG Y G,WU H T. ConceFT:concentration of frequency and time via a multitapered synchrosqueezed transform[J]. Philosophical Transactions of the Royal Society A,2016,374(2065):20150193. [94] IATSENKO D,MCCLINTOCK P V E,STEFANOVSKA A. Nonlinear mode decomposition:A noise-robust, adaptive decomposition method[J]. Physical Review E,2015,92(3):032916. [95] IATSENKO D,MCCLINTOCK P V,STEFANOVSKA A. Extraction of instantaneous frequencies from ridges in time-frequency representations of signals[J]. Signal Processing,2016,125:290-303. [96] IATSENKO D,MCCLINTOCK P V,STEFANOVSKA A. Linear and synchrosqueezed time-frequency representations revisited:overview,standards of use,resolution,reconstruction,concentration and algorithms[J]. Digital Signal Processing,2015,42:1-26. [97] QIN Y,TANG B,MAO Y. Adaptive signal decomposi-tion based on wavelet ridge and its application[J]. Signal Processing,2016,120:480-494. [98] LIM Y,SHINNCUNNINGHAM B G,GARDNER T J. Sparse contour representations of sound[J]. IEEE Signal Processing Letters,2012,19(10):684-687. [99] MEIGNEN S,OBERLIN T,DEPALLE P,et al. Adaptive multimode signal reconstruction from time-frequency representations[J]. Philosophical Transactions of the Royal Society A,2016,374(2065):20150205. [100] PHAM D H,MEIGNEN S. An adaptive computation of contour representations for mode decomposition[J]. IEEE Signal Processing Letters,2017,24(11):1596-1600. [101] FLANDRIN P. Time-frequency filtering based on spectrogram zeros[J]. IEEE Signal Processing Letters,2015,22(11):2137-2141. [102] RANDALL R B,ANTONI J. Rolling element bearing diagnostics-a tutorial[J]. Mechanical Systems and Signal Processing,2011,25(2):485-520. [103] ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing,2007,21(1):108-124. [104] DU Q,YANG S. Application of the EMD method in the vibration analysis of ball bearings[J]. Mechanical Systems and Signal Processing,2007,21(6):2634-2644. [105] FENG Z,ZUO M J,HAO R,et al. Ensemble empirical mode decomposition-based Teager energy spectrum for bearing fault diagnosis[J]. Journal of Vibration and Acoustics,2013,135(3):031013. [106] GUO W,TSE P W,DJORDJEVICH A. Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition[J]. Measurement,2012,45(5):1308-1322. [107] CAO H,FAN F,ZHOU K,et al. Wheel-bearing fault diagnosis of trains using empirical wavelet transform[J]. Measurement,2016,82:439-449. [108] KEDADOUCHE M,THOMAS M,TAHAN A. A comparative study between empirical wavelet transforms and empirical mode decomposition methods:application to bearing defect diagnosis[J]. Mechanical Systems and Signal Processing,2016,81:88-107. [109] 王建国,李健,万旭东. 基于奇异值分解和局域均值分解的滚动轴承故障特征提取方法[J]. 机械工程学报,2015,51(3):104-110. WANG Jianguo,LI Jian,WAN Xudong. Fault feature extraction method of rolling bearings based on singular value decomposition and local mean decomposition[J]. Journal of Mechanical Engineering,2015,51(3):104-110. [110] BO L,PENG C. Fault diagnosis of rolling element bearing using more robust spectral kurtosis and intrinsic time-scale decomposition[J]. Journal of Vibration and Control,2016,22(12):2921-2937. [111] LI Z,CHEN J,ZI Y,et al. Independence-oriented VMD to identify fault feature for wheel set bearing fault diagnosis of high speed locomotive[J]. Mechanical Systems and Signal Processing,2017,85:512-529. [112] 康晨晖,崔玲丽,王婧,等. 基于信号特征的复合字典多原子匹配算法研究[J]. 机械工程学报,2012,48(12):1-6. KANG Chenhui,CUI Lingli,WANG Jing,et al. Research on the composite dictionary multi-atoms matching algorithm based on the signal character[J]. Journal of Mechanical Engineering,2012,48(12):1-6. [113] YANG H,MATHEW J,MA L. Fault diagnosis of rolling element bearings using basis pursuit[J]. Mechanical Systems and Signal Processing,2005,19(2):341-356. [114] CUI L,JING W,LEE S. Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis[J]. Journal of Sound and Vibration,2014,333(10):2840-2862. [115] HE G,DING K,LIN H. Fault feature extraction of rolling element bearings using sparse representation[J]. Journal of Sound and Vibration,2016,366:514-527. [116] QIN Y. A new family of model-based impulsive wavelets and their sparse representation for rolling bearing fault diagnosis[J]. IEEE Transactions on Industrial Electronics,2017,65(3):2716-2726. [117] HE Q,SONG H,DING X. Sparse signal reconstruction based on time-frequency manifold for rolling element bearing fault signature enhancement[J]. IEEE Transac-tions on Instrumentation and Measurement,2016,65(2):482-491. [118] FENG Z,CHEN X,WANG T. Time-varying demo-dulation analysis for rolling bearing fault diagnosis under variable speed conditions[J]. Journal of Sound Vibration,2017,400:71-85. [119] HU Y,TU X,LI F,et al. An adaptive and tacholess order analysis method based on enhanced empirical wavelet transform for fault detection of bearings with varying speeds[J]. Journal of Sound and Vibration,2017,409:241-255. [120] WANG Y,YANG L,XIANG J,et al. A hybrid approach to fault diagnosis of roller bearings under variable speed conditions[J]. Measurement Science and Technology,2017,28(12):125104. [121] ZHAO D,LI J,CHENG W,et al. Compound faults detection of rolling element bearing based on the generalized demodulation algorithm under time-varying rotational speed[J]. Journal of Sound and Vibration,2016,378:109-123. [122] HUANG H,BADDOUR N,LIANG M. A method for tachometer-free and resampling-free bearing fault diagnos-tics under time-varying speed conditions[J]. Measurement,2019,134:101-117. [123] CHEN S,DU M,PENG Z,et al. High-accuracy fault feature extraction for rolling bearings under time-varying speed conditions using an iterative envelope-tracking filter[J]. Journal of Sound and Vibration,2019,448:211-229. [124] YANG Y,YU D,CHENG J. A roller bearing fault diagnosis method based on EMD energy entropy and ANN[J]. Journal of Sound and Vibration,2006,294(1):269-277. [125] ZHANG X,ZHOU J. Multi-fault diagnosis for rolling element bearings based on ensemble empirical mode decomposition and optimized support vector machines[J]. Mechanical Systems and Signal Processing,2013,41(1-2):127-140. [126] TIAN Y,MA J,LU C,et al. Rolling bearing fault diagnosis under variable conditions using LMD-SVD and extreme learning machine[J]. Mechanism and Machine Theory,2015,90:175-186. [127] 李永焯,丁康,何国林,等. 齿轮系统振动响应信号调制边频带产生机理[J]. 机械工程学报,2018,54(5):105-112. LI Yongzhuo,DING Kang,HE Guolin,et al. Modulation sidebands of the vibration signal of gearbox[J]. Journal of Mechanical Engineering,2018,54(5):105-112. [128] BARSZCZ T,RANDALL R B. Application of spectral kurtosis for detection of a tooth crack in the planetary gear of a wind turbine[J]. Mechanical Systems and Signal Processing,2009,23(4):1352-1365. [129] FENG Z,LIANG M,ZHANG Y,et al. Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decom-position and energy separation[J]. Renewable Energy,2012,47:112-126. [130] FENG Z,ZUO M J,QU J,et al. Joint amplitude and frequency demodulation analysis based on local mean decomposition for fault diagnosis of planetary gearboxes[J]. Mechanical Systems and Signal Processing,2013,40(1):56-75. [131] FENG Z,LIN X,ZUO M J. Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis[J]. Mechanical Systems and Signal Processing,2016,72:223-240. [132] CHEN X,CHENG G,SHAN X,et al. Research of weak fault feature information extraction of planetary gear based on ensemble empirical mode decomposition and adaptive stochastic resonance[J]. Measurement,2015,73:55-67. [133] LOUTRIDIS S. Damage detection in gear systems using empirical mode decomposition[J]. Engineering Structures,2004,26(12):1833-1841. [134] WANG D,MIAO Q,KANG R. Robust health evaluation of gearbox subject to tooth failure with wavelet decomposition[J]. Journal of Sound and Vibration,2009,324(3-5):1141-1157. [135] YU D,YANG Y,CHENG J. Application of time-frequency entropy method based on Hilbert-Huang transform to gear fault diagnosis[J]. Measurement,2007,40(9-10):823-830. [136] WANG Y,HE Z,XIANG J,et al. Application of local mean decomposition to the surveillance and diagnostics of low-speed helical gearbox[J]. Mechanism and Machine Theory,2012,47:62-73. [137] CHENG J,YU D,TANG J,et al. Application of SVM and SVD technique based on EMD to the fault diagnosis of the rotating machinery[J]. Shock and Vibration,2009,16(1):89-98. [138] PENG F,YU D,LUO J. Sparse signal decomposition method based on multi-scale chirplet and its application to the fault diagnosis of gearboxes[J]. Mechanical Systems and Signal Processing,2011,25(2):549-557. [139] CHENG J,ZHANG K,YANG Y. An order tracking technique for the gear fault diagnosis using local mean decomposition method[J]. Mechanism and Machine Theory,2012,55:67-76. [140] LI C,LIANG M. Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform[J]. Mechanical Systems and Signal Processing,2012,26:205-217. [141] FENG Z,CHEN X,LIANG M. Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions[J]. Mechanical Systems and Signal Processing,2015,52:360-375. [142] FENG Z,QIN S,LIANG M. Time-frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions[J]. Renewable Energy,2016,85:45-56. [143] 曾鸣,杨宇,郑近德,等. 归一化复域能量算子解调及其在转子碰摩故障诊断中的应用木[J]. 机械工程学报,2014,50(5):65-73. ZENG Ming,YANG Yu,ZHENG Jinde,et al. Normalized complex teager energy operator demodulation method and its application to rotor rub-impact fault diagnosis[J]. Journal of Mechanical Engineering,2014,50(5):65-73. [144] CHENG J,YU D,TANG J,et al. Local rub-impact fault diagnosis of the rotor systems based on EMD[J]. Mechanism and Machine Theory,2009,44(4):784-791. [145] LEI Y,ZUO M J. Fault diagnosis of rotating machinery using an improved HHT based on EEMD and sensitive IMFs[J]. Measurement Science and Technology,2009,20(12):125701. [146] YANG Y,CHENG J,ZHANG K. An ensemble local means decomposition method and its application to local rub-impact fault diagnosis of the rotor systems[J]. Measurement,2012,45(3):561-570. [147] JIANG H,LI C,LI H. An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis[J]. Mechanical Systems and Signal Processing,2013,36(2):225-239. [148] WANG Y,MARKERT R,XIANG J,et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems and Signal Processing,2015,60:243-251. [149] WANG S,CHEN X,LI G,et al. Matching demodulation transform with application to feature extraction of rotor rub-impact fault[J]. IEEE Transactions on Instrumentation and Measurement,2014,63(5):1372-1383. [150] YU G,YU M,XU C. Synchroextracting transform[J]. IEEE Transactions on Industrial Electronics,2017,64(10):8042-8054. [151] HU A,XIANG L,ZHANG Y. Experimental study on the intrawave frequency modulation characteristic of rotor rub and crack fault[J]. Mechanical Systems and Signal Processing,2019,118:209-225. [152] CHEN S,YANG Y,PENG Z,et al. Detection of rub-impact fault for rotor-stator systems:a novel method based on adaptive chirp mode decomposition[J]. Journal of Sound and Vibration,2019,440:83-99. [153] ZHOU P,DU M,CHEN S,et al. Study on intra-wave frequency modulation phenomenon in detection of rub-impact fault[J]. Mechanical Systems and Signal Processing,2019,122:342-363. |
[1] | 狄子钧, 袁东风, 李东阳, 梁道君, 周晓天, 信苗苗, 曹凤, 雷腾飞. 基于多尺度-高效通道注意力网络的刀具故障诊断方法[J]. 机械工程学报, 2024, 60(6): 82-90. |
[2] | 严如强, 许文纲, 王志颖, 朱启翔, 周峥, 赵志斌, 孙闯, 王诗彬, 陈雪峰, 张军辉, 徐兵. 航空发动机燃油控制系统故障诊断技术研究进展与挑战[J]. 机械工程学报, 2024, 60(4): 3-31. |
[3] | 张军辉, 刘施镐, 徐兵, 黄伟迪, 吕飞, 黄晓琛. 轴向柱塞泵智能化关键技术研究进展及发展趋势[J]. 机械工程学报, 2024, 60(4): 32-49. |
[4] | 丁孺琦, 熊文杰, 程敏, 徐兵. 智能化阀口独立电液控制系统安全性能评估[J]. 机械工程学报, 2024, 60(4): 101-112. |
[5] | 王志颖, 李天福, 许文纲, 孙闯, 张军辉, 徐兵, 严如强. 降噪混合注意力变分自编码器及其在轴向柱塞泵故障诊断中的应用[J]. 机械工程学报, 2024, 60(4): 167-177. |
[6] | 邵海东, 林健, 闵志闪, 明宇航. 分布外样本干扰下基于改进半监督原型网络的齿轮箱跨域故障诊断[J]. 机械工程学报, 2024, 60(4): 212-221. |
[7] | 潘海洋, 徐海锋, 郑近德, 童靳于, 张飞斌. 基于双加权不平衡矩阵分类器的机械故障诊断方法[J]. 机械工程学报, 2024, 60(3): 170-180. |
[8] | 赵轲, 叶敏, 王瑞欣, 陆海, 刘孟孟, 邵海东. 基于模糊域自适应的源自由域旋转机械故障诊断方法[J]. 机械工程学报, 2024, 60(18): 43-52. |
[9] | 李志鹏, 马天雨, 刘金平, 向青松, 唐俊杰. 基于非对称性对抗训练的多源域自适应智能故障诊断方法[J]. 机械工程学报, 2024, 60(18): 76-88. |
[10] | 汪煜坤, 易彩, 汪浩, 周秋阳, 冉乐, 王靖元. PSD引导的自适应频带划分方法及其在轴承故障诊断中的应用[J]. 机械工程学报, 2024, 60(17): 179-193. |
[11] | 刘一龙, 李心远, 陈银萍, 成玮, 陈雪峰. 基于峭度曲面极大值的电机轴承保持架故障诊断方法[J]. 机械工程学报, 2024, 60(15): 89-99. |
[12] | 于小洛, 杨阳, 杜明刚, 何清波, 彭志科. 机械传动系统含偏差频率分量协同检测与分解方法[J]. 机械工程学报, 2024, 60(15): 100-112. |
[13] | 黄包裕, 张永祥. 一种基于三步法的轴承故障诊断方法[J]. 机械工程学报, 2024, 60(14): 51-68. |
[14] | 陈钱, 陈康康, 董兴建, 皇甫一樊, 彭志科, 孟光. 一种面向机械设备故障诊断的可解释卷积神经网络[J]. 机械工程学报, 2024, 60(12): 65-76. |
[15] | 王诗彬, 王世傲, 陈雪峰, 黄海, 安波涛, 赵志斌, 刘永泉, 李应红. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||