• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (9): 84-90.doi: 10.3901/JME.2020.09.084

• 机械动力学 • 上一篇    下一篇

扫码分享

基于提升深度迁移自动编码器的轴承智能故障诊断

邵海东1, 张笑阳2, 程军圣1, 杨宇1   

  1. 1. 湖南大学汽车车身先进设计制造国家重点实验室 长沙 410082;
    2. 中国航空工业集团公司西安航空计算技术研究所 西安 710065
  • 收稿日期:2019-05-29 修回日期:2020-01-08 出版日期:2020-05-05 发布日期:2020-05-29
  • 通讯作者: 邵海东(通信作者),男,1990年出生,博士,讲师。主要研究方向为故障诊断与智能预测。E-mail:hdshao@hnu.edu.cn
  • 作者简介:张笑阳,男,1990年出生,硕士,助理工程师。主要研究方向为设备测试性与安全性分析。E-mail:zxyang123456@126.com
  • 基金资助:
    国家自然科学基金(51905160,51875183)和中央高校基本科研业务费专项资金(531118010335)资助项目。

Intelligent Fault Diagnosis of Bearing Using Enhanced Deep Transfer Auto-encoder

SHAO Haidong1, ZHANG Xiaoyang2, CHENG Junsheng1, YANG Yu1   

  1. 1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082;
    2. Xi'an Aeronautics Computing Technique Research Institute, AVIC, Xi'an 710065
  • Received:2019-05-29 Revised:2020-01-08 Online:2020-05-05 Published:2020-05-29

摘要: 实际工程中,含标注信息的轴承监测数据严重缺乏,这将导致其智能故障诊断模型难以有效构建。提出了一种基于提升深度迁移自动编码器的新方法用于不同机械设备间的轴承故障智能诊断。首先,采用可缩放指数型线性单元作为标准自动编码器的激活函数,提升原始振动数据的映射质量。然后,非负约束用于修正代价函数,进一步减少重构误差。其次,构建提升深度自动编码器并用充足可用的源域数据进行预训练,得到的参数作为目标模型的初始化参数。最后,目标域中仅有的一个训练样本用于目标模型的微调以适应剩余的测试样本。将所提方法用于分析不同轴承的试验振动数据,结果表明,所提方法能基于原始振动数据有效实现不同种机械设备间的迁移诊断。

关键词: 提升深度自动编码器, 轴承故障, 迁移诊断, 可缩放指数型线性单元, 非负约束

Abstract: The collected data with labeled information of bearing is far insufficient in engineering practice, which is a great challenge for effectively training an intelligent diagnosis model. A new method called enhanced deep transfer auto-encoder is proposed for bearing fault diagnosis of different machines. First, scaled exponential linear unit is used to improve the quality of the mapped vibration data collected from bearing. Second, nonnegative constraint is adopted to modify the cost function to reduce reconstruction error. Third, an enhanced deep auto-encoder model is pre-trained with sufficient available data in the source domain and its parameters are transferred to initialize the target domain model. Finally, the enhanced deep transfer model is fine-tuned with only one training sample in the target domain to adapt to the characteristics of the remaining testing samples. Two sets of vibration data from bearings installed in the different machines are used to verify the feasibility of the proposed method. The analysis result confirms that the proposed method is able to achieve effective transfer diagnosis between different machines.

Key words: enhanced deep auto-encoder, bearing fault, transfer diagnosis, scaled exponential linear unit, nonnegative constraint

中图分类号: