[1] 刘大响. 一代新材料,一代新型发动机:航空发动机的发展趋势及其对材料的需求[J]. 材料工程,2017,45(10):1-5. LIU Daxiang. One generation of new material,one generation of new type engine:Development trend of aero-engine and its requirements for materials[J]. Journal of Materials Engineering,2017,45(10):1-5. [2] WADSWORTH J. The evolution of technology for structural materials over the last 50 years[J]. JOM,2007,59(2):41-47. [3] 沙江波. Nb-Si基超高温合金研究进展[J]. 航空制造技术,2010(14):58-61. SHA Jiangbo. Research progress of Nb-Si ultra high temperature alloy[J]. Aeronautical Manufacturing Technology,2010(14):58-61. [4] BEWLAY B P,JACKSON M R,SUBRAMANIAN P R,et al. A review of very-high-temperature Nb-silicide-based composites[J]. Metallurgical and Materials Transactions A,2003,34(10):2043-2052. [5] 张虎,原赛男,周春根,等. Nb-Si金属间化合物基超高温合金研究进展[J]. 航空学报,2014,35(10):2756-2766. ZHANG Hu,YUAN Sainan,ZHOU Chungen,et al. Research progress on ultra-high-temperature Nb-silicide-based alloys[J]. Acta Aeronautica et Astronautica Sinica,2014,35(10):2756-2766. [6] 李能,熊华平,秦仁耀,等. 原位反应制备Ti2AlNb/TiC +Ti3SiC2梯度材料的激光熔覆组织及成形机理[J]. 机械工程学报,2018(8):144-150. LI Neng,XIONG Huaping,QIN Renyao,et al. Microstructure and mechanism of Ti2AlNb/TiC+Ti3SiC2 gradient materials by in-situ reaction laser cladding[J]. Journal of Mechanical Engineering,2018(8):144-150. [7] LIU W,SHA J B. Failure mode transition of Nb phase from cleavage to dimple/tear in Nb-16Si-based alloys prepared via spark plasma sintering[J]. Materials & Design,2016,111:301-311. [8] SHA J,YANG C,LIU J. Toughening and strengthening behavior of an Nb-8Si-20Ti-6Hf alloy with addition of Cr[J]. Scripta Materialia,2010,62(11):859-862. [9] LI X,CHEN H,SHA J,et al. The effects of melting technologies on the microstructures and properties of Nb-16Si-22Ti-2Al-2Hf-17Cr alloy[J]. Materials Science and Engineering:A,2010,527(23):6140-6152. [10] WANG Y,GUO X,QIAO Y. Interactions between Nb-Si based ultrahigh temperature alloy and yttria matrix mould shells[J]. Materials & Design,2017,116:461-471. [11] 李青宇,张航,李涤尘,等. 激光增材制造WNbMoTa高性能高熵合金[J]. 机械工程学报,2019,55(15):10-16. LI Qingyu,ZHANG Hang,LI Dichen,et al. Manufacture of WNbMoTa high performance high-entropy alloy by laser additive manufacturing[J]. Journal of Mechanical Engineering,2019,55(15):10-16. [12] LIU W,XIONG H P,LI N,et al. Microstructure char-acteristics and mechanical properties of Nb-17Si-23Ti ternary alloys fabricated by in situ reaction laser melting deposition[J]. Acta Metallurgica Sinica (English Letters),2018,31(4):362-370. [13] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151,159. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing on complex structures and high-performance materials[J]. Journal of Mechanical Engineering,2019,55(20):128-151,159. [14] DICKS R,WANG F,WU X. The manufacture of a niobium/niobium-silicide-based alloy using direct laser fabrication[J]. Journal of Materials Processing Technology,2009,209(4):1752-1757. [15] LI Y,LIN X,HU Y,et al. Zirconium modified Nb-22Ti-16Si alloys fabricated by laser additive manufacturing:Microstructure and fracture toughness[J]. Journal of Alloys and Compounds,2019,783:66-76. [16] LI N,HUANG S,ZHANG G,et al. Progress in additive manufacturing on new materials:A review[J]. Journal of Materials Science and Technology,2019,35(2):242-269. [17] LIU Wei,SHA Jiangbo. Effect of Nb and Nb5Si3 powder size on microstructure and fracture behavior of an Nb-16Si alloy fabricated by spark plasma sintering[J]. Metallurgical & Materials Transactions A,45(10):4316-4323. [18] 刘伟,熊华平,李能,等. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程,2018,46(2):27-33. LIU Wei,XIONG Huaping,LI Neng,et al. Effect of preparation process on microstructure of Nb-16Si binary alloys fabricated by laser melting deposition[J]. Journal of Materials Engineering,2018,46(2):27-33. [19] SCHLESINGER M E,OKAMOTO H,GOKHALE A B,et al. The Nb-Si (Niobium-Silicon) system[J]. Journal of Phase Equilibria,1993,14(4):502-509. [20] MITRA R. Mechanical behaviour and oxidation resistance of structural silicides[J]. International Materials Reviews,2006,51(1):13-64. [21] LI Y,GU D. Thermal behavior during selective laser melting of commercially pure titanium powder:Numerical simulation and experimental study[J]. Additive Manufacturing,2014,1:99-109. [22] LI Y,MIURA S,OHSASA K,et al. Ultrahigh-temperature NbSS/Nb5Si3 fully-lamellar microstructure developed by directional solidification in OFZ furnace[J]. Intermetallics,2011,19(4):460-469. [23] FLEMINGS M C. Solidification processing[J]. Metallurgical Transactions,1974,5(10):2121-2134. [24] LI J,WANG H. Microstructure and mechanical properties of rapid directionally solidified Ni-base superalloy Rene' 41 by laser melting deposition manufacturing[J]. Materials Science and Engineering:A,2010,527(18):4823-4829. [25] AVRAMI M. Interfacial electrochemistry:Theory,experiment,and applications[J]. J. Chem. Phys.,1939,7:1103-1112. [26] LI S N,XIONG H P,LI N,et al. Mechanical properties and formation mechanism of Ti/SiC system materials fabricated by in-situ reaction laser cladding[J]. Ceramics International,2017,43(1):961-967. [27] LI N,XIONG Y,XIONG H P,et al. Microstructure,formation mechanism and property characterization of Ti+SiC laser cladded coatings on Ti6Al4V alloy[J]. Materials Characterization,2019,148:43-51. [28] LI N,LIU W,XIONG H P,et al. In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC+Ti3SiC2) system functionally graded material[J]. Materials and Design,2019,183:108155. [29] HANSEN N. Hall-Petch relation and boundary strengthening[J]. Scripta Materialia,2004,51(8):801-806. |