机械工程学报 ›› 2020, Vol. 56 ›› Issue (6): 73-84.doi: 10.3901/JME.2020.06.073
李淳, 王志权, 司晓庆, 亓钧雷, 冯吉才, 曹健
收稿日期:
2019-09-02
修回日期:
2019-11-30
出版日期:
2020-03-20
发布日期:
2020-05-12
作者简介:
李淳,男,1989年出生,讲师。主要研究方向为陶瓷与金属连接接头微观组织与残余应力分析。E-mail:chun.li@hit.edu.cn;基金资助:
LI Chun, WANG Zhiquan, SI Xiaoqing, QI Junlei, FENG Jicai, CAO Jian
Received:
2019-09-02
Revised:
2019-11-30
Online:
2020-03-20
Published:
2020-05-12
摘要: 轻质金属由于其高比强度的优点,在航空航天、能源、汽车、建筑、包装与交通运输等诸多领域中得到了广泛的应用。然而大多数轻质金属的高温强度较低,将轻质金属与陶瓷连接起来制备成复合结构有助于获得质量较轻,高温性能优良的构件。本文综述了钛合金,铝合金,锆合金与TiAl金属间化合物等常用轻质金属与Al2O3、ZrO2、SiC、SiO2、Si3N4与MAX相等常见陶瓷及SiO2f/SiO2和Cf/SiC等陶瓷基复合材料的钎焊,扩散焊的研究现状,并介绍了如中间层法,复合钎料法与界面结构设计等常用的缓解轻质金属与陶瓷接头中残余应力的方法,综述了中间层与复合钎料中增强相的选取原则,讨论了目前轻质金属与陶瓷连接中存在的问题与发展趋势。
中图分类号:
李淳, 王志权, 司晓庆, 亓钧雷, 冯吉才, 曹健. 轻质金属与陶瓷连接研究综述[J]. 机械工程学报, 2020, 56(6): 73-84.
LI Chun, WANG Zhiquan, SI Xiaoqing, QI Junlei, FENG Jicai, CAO Jian. Review on the Research of the Joining of Lightweight Metals and Ceramics[J]. Journal of Mechanical Engineering, 2020, 56(6): 73-84.
[1] JACKSON J A M J,NEUENDORF K K E. Glossary of geology[M]. 5th ed. Alexandria:American Geological Institute,2005. [2] 张先炼,何晓聪,赵伦,等.钛合金薄板自冲铆接工艺及失效行为研究[J].机械工程学报,2018,54(13):202-207. ZHANG Xianlian,HE Xiaocong,ZHAO Lun,et al. Process and failure behaviors of self-piercing riveting in titanium alloy sheets[J]. Journal of Mechanical Engineering,2018,54(13):202-207. [3] 贺建超,张田仓,何胜春. Ti600/TC17钛合金惯性摩擦焊接头组织与力学性能研究[J].机械工程学报,2017,53(22):95-100. HE Jianchao,ZHANG Tiancang,HE Shengchun. Research of microstructure and mechanical properties of Ti600/TC17 inertia friction welding joints[J]. Journal of Mechanical Engineering,2017,53(22):95-100. [4] 刘肖,王理,包陈,等.含轴向对称裂纹锆合金包壳管断裂行为[J].机械工程学报,2019(16):85-90. LIU Xiao,WANG Li,BAO Chen,et al. Fracture behaviour of zirconium alloy cladding tubes containing axial symmetric cracks[J]. Journal of Mechanical Engineering,2019(16):85-90. [5] 刘庆冬,张浩,曾奇锋,等. SZA-4和ZIRLO锆合金在360℃含氧水环境中的腐蚀行为[J].机械工程学报,2019(8):88-96. LIU Qingdong,ZHANG Hao,ZENG Qifeng,et al. Pre-transition corrosion behavior of SZA-4 and ZIRLO alloys in dissolved oxygen aqueous condition at 360℃[J]. Journal of Mechanical Engineering,2019(8):88-96. [6] 金飞翔,钟志平,李凤娇,等.不同硬化模型对铝合金板冲压成形模拟结果的影响[J].机械工程学报,2017,53(22):57-66. JIN Feixiang,ZHONG Zhiping,LI Fengjiao,et al. Influence of different hardening model for the simulating results of the aluminum alloy sheet stamping[J]. Journal of Mechanical Engineering,2017,53(22):57-66. [7] 万震宇,周霞,张昭. 6005-T6铝合金搅拌摩擦焊接微观组织演变计算及力学性能预测[J].机械工程学报,2018,54(8):129-136. WAN Zhenyu,ZHOU Xia,ZHANG Zhao. Calculations of microstructural changes and predictions of mechanical properties in friction stir welding of AA6005-T6[J]. Journal of Mechanical Engineering,2018,54(8):129-136. [8] 曹健,贺宗晶,亓钧雷,等.采用(Ti/Si/Cu) f多层箔钎焊C/C复合材料与TiAl合金[J].机械工程学报,2018,54(9):108-114. CAI Jian,HE Zongjing,QI Junlei,et al. Brazing of C/C composite to TiAl alloy using (Ti/Ni/Cu) f multi-foil filler[J]. Journal of Mechanical Engineering,2018,54(9):108-114. [9] CLEMENS H,MAYER S. Intermetallic titanium aluminides in aerospace applications-processing,microstructure and properties[J]. Materials at High Temperatures,2016,33(4-5):560-570. [10] SCHUTZ R,WATKINS H. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering:A,1998,243(1-2):305-315. [11] BACZYNSKI G,GUZZO R,BALL M,et al. Development of roping in an aluminum automotive alloy AA6111[J]. Acta materialia,2000,48(13):3361-3376. [12] TEKKAYA A E,KHALIFA N B,GRZANCIC G,et al. Forming of lightweight metal components:need for new technologies[J]. Procedia Engineering,2014,81:28-37. [13] HAACK D P,BUTCHER K R,KIM T,et al. Novel lightweight metal foam heat exchangers[C]//2001 ASME Congress Proceedings,2001:1-7. [14] LESUER D R,KIPOUROS G J. Lightweight materials for transportation applications[J]. JOM Journal of the Minerals,Metals and Materials Society,1995,47(7):17. [15] LIU X,LIU H,HUANG C,et al. Synergistically toughening effect of SiC whiskers and nanoparticles in Al2O3-based composite ceramic cutting tool material[J]. Chinese Journal of Mechanical Engineering,2016,29(5):977-982. [16] 叶宏明,叶国珍.先进陶瓷材料研究现状[J].中国陶瓷工业,2002,9(1):30-36. YE Hongming,YE Guozhen. The current state of the study on advanced ceramics[J]. China Ceramic Industry,2002,9(1):30-36. [17] 任家烈,吴爱萍,先进材料的连接[M].北京:机械工业出版社,2000. REN Jialie,WU Aiping. Joining of advanced materials[M]. Beijing:China Machine Press,2000. [18] KIM Y S,YANG S H. Effect of plastic anisotropy on the formability of aluminum 6016-T4 sheet material[J]. Chinese Journal of Mechanical Engineering,2017,30(3):625-631. [19] CLARKE D R,OECHSNER M,PADTURE N P. Thermal-barrier coatings for more efficient gas-turbine engines[J]. MRS Bulletin,2012,37(10):891-898. [20] GORJAN L,BLUGAN G,BORETIUS M,et al. Fracture behavior of soldered Al2O3 ceramic to A356 aluminum alloy and resistance of the joint to low temperature exposure[J]. Materials & Design,2015,88:889-896. [21] LI C,SI X,DAI X,et al. Understanding the effect of surface machining on the YSZ/Ti6Al4V joint via image based modelling[J]. Scientific Reports,2019,9(1):12027. [22] NONO M C A,BARROSO J J,CASTRO P J. Mechanical behavior and microstructural analysis of alumina-titanium brazed interfaces[J]. Materials Science and Engineering:A,2006,435-436:602-605. [23] ZOU G,WU A,ZHANG D,et al. Joint strength with soldering of Al2O3 ceramics after ni-p chemical plating[J]. Tsinghua Science and Technology,2004,9(5):607-611. [24] HAMMOND J,DAVID S,SANTELLA M. Brazing ceramic oxides to metals at low temperatures[J]. Welding J.,1988,67(10):227s-232s. [25] ALI M,KNOWLES K M,MALLINSON P M,et al. Interfacial reactions between sapphire and Ag-Cu-Ti-based active braze alloys[J]. Acta Materialia,2016,103:859-869. [26] VOYTOVYCH R,ROBAUT F,EUSTATHOPOULOS N. The relation between wetting and interfacial chemistry in the CuAgTi/alumina system[J]. Acta Materialia,2006,54(8):2205-2214. [27] LIU H,ZHANG L,WU L,et al. Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil[J]. Materials Science and Engineering:A,2008,498(1-2):321-326. [28] DAI X,CAO J,LIU J,et al. Interfacial reaction behavior and mechanical characterization of ZrO2/TC4 joint brazed by Ag-Cu filler metal[J]. Materials Science and Engineering:A,2015,646:182-189. [29] LIU Y,WANG G,CAO W,et al. Brazing ZrB2-SiC ceramics to Ti6Al4V alloy with TiCu-based amorphous filler[J]. Journal of Manufacturing Processes,2017,30:516-522. [30] CAO J,SONG X,LI C,et al. Brazing ZrO2 ceramic to Ti-6Al-4V alloy using NiCrSiB amorphous filler foil:Interfacial microstructure and joint properties[J]. Materials Characterization,2013,81:85-91. [31] YANG M,LIN T,HE P,et al. Brazing of Al2O3 to Ti-6Al-4V alloy with in situ synthesized TiB-whisker-reinforced active brazing alloy[J]. Ceramics International,2011,37(8):3029-3035. [32] SHI J,ZHANG L,PAN X,et al. Microstructure evolution and mechanical property of ZrC-SiC/Ti6Al4V joints brazed using Ti-15Cu-15Ni filler[J]. Journal of the European Ceramic Society,2018,38(4):1237-1245. [33] SHI J,ZHANG L,CHANG Q,et al. Improving the strength of the ZrC-SiC and TC4 brazed joint through fabricating graded double-layered composite structure on TC4 surface[J]. Metallurgical and Materials Transactions B,2018,49(3):902-911. [34] 张丽霞,吴林志,田晓羽,等. SiO2陶瓷与TC4钛合金的钎焊研究[J].材料工程,2008(9):13-16. ZHANG Lixia,WU Linzhi,TIAN Xiaoyu,et al. Research on the brazing of SiO2 ceramic to TC4 alloy[J]. Journal of Materials Engineering,2008(9):13-16. [35] LIN J,BA J,CAI Y,et al. Brazing SiO2f/SiO2 with TC4 alloy with the help of coating graphene[J]. Vacuum,2017,145:241-244. [36] GAMBARO S,VALENZA F,PASSERONE A,et al. Brazing transparent YAG to Ti6Al4V:reactivity and characterization[J]. Journal of the European Ceramic Society,2016,36(16):4185-4196. [37] XIA Y,WANG Y,YANG Z,et al. Contact-reactive brazing of Ti3SiC2 ceramic to TC4 alloy using a Ni interlayer:Interfacial microstructure and joining properties[J]. Ceramics International,2018,44(10):11869-11877. [38] WANG Y,XIA Y,YANG Z,et al. Interfacial microstructure and mechanical properties of TC4/Ti3SiC2 contact-reactive brazed joints using a Cu interlayer[J]. Ceramics International,2018,44(18):22154-22164. [39] 朱永权,张丽霞,任伟,等.表面活化Al2O3陶瓷与5005铝合金真空钎焊[J].焊接学报,2019,39(11):78-82. ZHU Yongquan,ZHANG Lixia,REN Wei,et al. Vacuum brazing of surface activitated Al2O3 and 5005 aluminum alloy[J]. Transactions of the China Welding Institution,2019,39(11):78-82. [40] 袁改焕,李恒羽,王德华.锆材在核电站的应用及前景[J].稀有金属快报,2007,26(1):14-16. YUAN Gaihuan,LI Hengyu,WANG Dehua. Application of zirconium material for nuclear power station[J]. Rare Metals Letters,2007,26(1):14-16. [41] 宋奋武,乔来先,朱守良.锆基合金与陶瓷钎焊[J].上海钢研,1985(5):148. SONG Fenwu,QIAO Laixian,ZHU Shouliang. Brazing of Zr alloy and ceramics[J]. Shonghai Steel & Iron Research,1985(5):148. [42] 李宝辉,孔凡涛,陈玉勇,等. TiAl金属间化合物的合金设计及研究现状[J].航空材料学报,2006(2):72-78. LI Baohui,KONG Fantao,CHEN Yuyong,et al. Alloying design of titanium aluminum intermetallics and research progress[J]. Journal of Aeronautical Materials,2006(2):72-78. [43] 牛国宾,王东坡,杨振文,等. Al2O3陶瓷与TiAl合金真空钎焊接头界面组织及性能[J].稀有金属材料与工程,2017,46(11):3282-3287. NIU Guobin,WANG Dongpo,YANG Zhenwen,et al. Interfacial structure and properties of Al2O3 ceramic and TiAl alloy brazed joints[J]. Rare Metal Materials and Engineering,2017,46(11):3282-3287. [44] ZHAO Y,SONG X,HU S,et al. Interfacial microstructure and mechanical properties of porous-Si3N4 ceramic and TiAl alloy joints vacuum brazed with AgCu filler[J]. Ceramics International,2017,43(13):9738-9745. [45] DAI X,CAO J,LIU J,et al. Effect of holding time on microstructure and mechanical properties of ZrO2/TiAl joints brazed by Ag-Cu filler metal[J]. Materials & Design,2015,87:53-59. [46] LIN J H,CHEN S L,MAO D S,et al. Control interfacial microstructure and improve mechanical properties of TC4-SiO2f/SiO2 joint by AgCuTi with Cu foam as interlayer[J]. Ceramics International,2016,42(15):16619-16625. [47] YANG Z,HE P,ZHANG L,et al. Microstructural evolution and mechanical properties of the joint of TiAl alloys and C/SiC composites vacuum brazed with Ag-Cu filler metal[J]. Materials Characterization,2011,62(9):825-832. [48] FAN D,HUANG J,CUI B,et al. Interfacial behavior and its effect on mechanical properties of Cf/SiC composite/TiAl6V4 joint brazed with TiZrCuNi[J]. Journal of Materials Engineering and Performance,2017,26(3):1114-1121. [49] BARRENA M,MATESANZ L,DE SALAZAR J G. Al2O3/Ti6Al4V diffusion bonding joints using Ag-Cu interlayer[J]. Materials Characterization,2009,60(11):1263-1267. [50] FAN D,LI C,HUANG J,et al. A novel composite-diffusion brazing process based on transient liquid phase bonding of a Cf/SiC composite to Ti-6Al-4V[J]. Ceramics International,2017,43(15):13009-13012. [51] 潘瑞. Al2O3陶瓷/Ti场助扩散连接工艺及机理研究[J].哈尔滨:哈尔滨工业大学,2013. PAN Rui. Study on technology and mechanism of electric-assisted diffusion bonding of alumina ceramic to Ti[M]. Harbin:Harbin Institute of Technology,2013. [52] BASU S,OZAYDIN M,KOTHALKAR A,et al. Phase and morphology evolution in high-temperature Ti3SiC2-NiTi diffusion-bonded joints[J]. Scripta Materialia,2011,65(3):237-240. [53] KOTHALKAR A,CERIT A,PROUST G,et al. Interfacial study of NiTi-Ti3SiC2 solid state diffusion bonded joints[J]. Materials Science and Engineering:A,2015,622:168-177. [54] SOZHAMANNAN G,PRABU S B. Influence of interface compounds on interface bonding characteristics of aluminium and silicon carbide[J]. Materials Characterization,2009:60(9):986-990. [55] SOZHAMANNAN G,PRABU S B. An experimental investigation of the interface characteristics of aluminium/silicon carbide[J]. Journal of Alloys and Compounds,2010,503(1):92-95. [56] PAN H,ITOH I,MATSUBARA M. Mechanical properties of diffusion bonding joint of SiC and Al-Sn alloys at elevated temperatures[J]. Materials Transactions,2001,42(12):2543-2547. [57] 王大勇,冯吉才,刘会杰,等. Al2O3/Cu/Al扩散连接工艺参数的优化[J].材料科学与工艺,2003,11(1):73-76. WANG Dayong,FENG Jicai,LIU Huijie,et al. Optimization of technological parameters for diffusion bonding Al2O3 ceramics to aluminum alloy[J]. Materials Science and Technology,2003,11(1):73-76. [58] LIU J,CAO J,SONG X,et al. Evaluation on diffusion bonded joints of TiAl alloy to Ti3SiC2 ceramic with and without Ni interlayer:Interfacial microstructure and mechanical properties[J],Materials & Design,2014,57:592-597. [59] CAO J,LIU J,SONG X,et al. Diffusion bonding of TiAl intermetallic and Ti3AlC2 ceramic:Interfacial microstructure and joining properties[J]. Materials & Design,2014,56:115-121. [60] ROHATGI P,GUPTA N,ALARAJ S. Thermal expansion of aluminum-fly ash cenosphere composites synthesized by pressure infiltration technique[J]. Journal of Composite Materials,2006,40(13):1163-1174. [61] CHUA B,LU L,LAI M. Influence of SiC particles on mechanical properties of Mg based composite[J]. Composite Structures,1999,47(1-4):595-601. [62] YANG Z W,ZHANG L X,CHEN Y C,et al. Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2-BN joint[J]. Materials Science and Engineering:A,2013,575:199-205. [63] CHANG H,CHOI S C,PARK S W,et al. Effects of residual stress on fracture strength of Si3N4/stainless steel joints with a Cu-interlayer[J]. Journal of Materials Engineering and Performance,2002,11(6):640-644. [64] LIN J H,LUO D L,CHEN S L,et al. Control interfacial microstructure and improve mechanical properties of TC4-SiO2f/SiO2 joint by AgCuTi with Cu foam as interlayer[J]. Ceramics International,2016,42(15):16619-16625. [65] 李树杰,刘伟,李姝芝,等. SiC陶瓷与Ni基高温合金连接件应力的有限元分析[J].粉末冶金材料科学与工程,2012,17(1):10-17. LI Shujie,LIU Wei,LI Shuzhi,et al. Finite element analysis for welding stress of SiC ceramic to Ni-based superalloy joints[J]. Materials Science and Engineering of Powder Metallurgy,2012,17(1):10-17. [66] QIN Y,FENG J. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers[J]. Materials Science and Engineering:A,2009,525(1-2):181-185. [67] 宋昌宝. ZrC-SiC陶瓷与Nb瞬时液相扩散连接工艺及界面反应机理[D].哈尔滨:哈尔滨工业大学,2014. SONG Changbao. Study on the process and interfacial reaction mechanism of the transient liquid phase bonding between ZrC-SiC ceramic and Nb[D]. Harbin:Harbin Institute of Technology,2014. [68] 刘海. SiBCN陶瓷与TC4钛合金的钎焊工艺及机理研究[D].哈尔滨:哈尔滨工业大学,2016. LIU Hai. Research on processing and mechanism of brazing SiBCN ceramics and TC4 titanium alloy[D]. Harbin:Harbin Institute of Technology,2016. [69] KIMURA O,KAWASHIMA T. Effect of interlayer thickness on residual thermal stresses in a ceramic-to-metal cylindrical joint[J]. Journal of the American Ceramic Society,1993,76(3):757-759. [70] PIETRZAK K,KALIŃSKI D,CHMIELEWSKI M. Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina-heat resisting steel joints[J]. Journal of the European Ceramic Society,2007,27(2):1281-1286. [71] CUI B,HUANG J,CAI C,et al. Microstructures and mechanical properties of Cf/SiC composite and TC4 alloy joints brazed with (Ti-Zr-Cu-Ni)+W composite filler materials[J]. Composites Science and Technology,2014,97:19-26. [72] WANG W,FAN D,HUANG J,et al. Microstructural mechanism and mechanical properties of Cf/SiC composite/TC4 alloy joints composite-diffusion brazed with TiZrCuNi+TiCp composite filler[J]. Materials Science and Engineering:A,2018,728:1-9. [73] SONG X G,CAO J,WANG Y F,et al. Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint[J]. Materials Science and Engineering:A,2011,528(15):5135-5140. [74] YANG M,HE P,LIN T. Effect of brazing conditions on microstructure and mechanical properties of Al2O3/Ti-6Al-4V alloy joints reinforced by TiB whiskers[J]. Journal of Materials Science & Technology,2013,29(10):961-970. [75] YANG W,LIN T,HE P,et al. Microstructural evolution and growth behavior of in situ TiB whisker array in ZrB2-SiC/Ti6Al4V brazing joints[J]. Journal of the American Ceramic Society,2013,96(12):3712-3719. [76] 李海刚,毕建勋,马武军,等.激光毛化对Cf/SiC与TC4钎焊接头组织及性能的影响[J].宇航材料工艺,2017,47(1):42-46. LI Haigang,BI Jianxun,MA Wujun,et al. Influence of laser roughing technology on microstructureand properties of Cf/SiC-TC4 brazing joints[J]. Aerospace Materials & Technology,2017,47(1):42-46. [77] ZHANG Y,ZOU G,LIU L,et al. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure[J]. Materials Science and Engineering:A,2016,662:178-184. [78] MA Q,LI Z R,CHEN S L,et al. Regulating the surface structure of SiO2f/SiO2 composite for assisting in brazing with Nb[J]. Materials Letters,2016,182:159-162. |
[1] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[2] | 陈钊杰, 谢晋, 刘军汉, 熊长新, 李迪帆. 脉冲放电驱动磨料流辅助磨削单晶碳化硅研究[J]. 机械工程学报, 2024, 60(9): 383-392. |
[3] | 李力, 王一轩, 罗芬, 张文涛, 赵巍, 李小强. 钎焊时间对TiH2-65Ni+TiB2钎料钎焊连接TiAl合金接头的影响[J]. 机械工程学报, 2024, 60(8): 176-185. |
[4] | 王星星, 吴港, 何鹏, 杨晓红. 基于第一性原理的镍/碳化钨复合钎涂层界面分析[J]. 机械工程学报, 2024, 60(4): 296-304. |
[5] | 胡龙, 刘红艳, 成慧梅, 陈维奇, 冯广杰, 叶延洪, 邓德安. 超高强耐磨钢NM500多层多道对接接头残余应力的研究[J]. 机械工程学报, 2024, 60(4): 335-344. |
[6] | 马泳涛, 孙宁, 王俊龙, 李春凡, 卢春生, 张彬, 刘兰荣. 前混合水射流喷丸覆盖率计算及对渗碳钢表面完整性的影响研究[J]. 机械工程学报, 2024, 60(3): 393-404. |
[7] | 于江, 唐小雅, 孙宇, 张洪涛, 杨涛. 钨/钢异种金属电阻扩散焊接头组织与性能[J]. 机械工程学报, 2024, 60(20): 173-180. |
[8] | 贾旭, 胡利方, 李子昊, 郑植, 刘伟, 张 鹏. 基于阳极键合玻璃与铜的钎焊连接机理研究及其力学性能分析[J]. 机械工程学报, 2024, 60(2): 140-149. |
[9] | 张家豪, 王磊磊, 张彦霄, 黎一帆, 王晓明, 占小红. 激光熔化沉积TiC/TC4功能梯度材料微观组织与拉伸性能研究[J]. 机械工程学报, 2024, 60(19): 356-366. |
[10] | 王煊, 熊鼎宇, 屈飘, 刘长勇, 陈张伟. 喷墨打印成形固体氧化物燃料电池复合陶瓷阴极及其电化学性能研究[J]. 机械工程学报, 2024, 60(17): 321-329. |
[11] | 张驰, 刘富初, 穆英朋, 吴丁一, 吴明, 林雨霄, 韩光超, 樊自田. 基于浆料直写成形的多孔氧化铝陶瓷孔隙率与抗弯强度的相关性研究[J]. 机械工程学报, 2024, 60(17): 330-338. |
[12] | 高帅, 韩勤锴, 褚福磊. 具备实时动态稳定性监测特性的高速混合陶瓷摩擦电滚动轴承[J]. 机械工程学报, 2024, 60(15): 80-88. |
[13] | 朱鹏娟, 刘晓玲, 周亚林, 何文卓, 郭峰. 混合陶瓷球轴承的热混合润滑性能分析[J]. 机械工程学报, 2024, 60(15): 205-215. |
[14] | 高德君, 武绍旺, 杨生旭, 张承浩, 周龙, 司晓庆, 李淳, 亓钧雷, 曹健. 高温时效对TA1/TC4钎焊接头组织与性能的影响研究[J]. 机械工程学报, 2024, 60(14): 109-116. |
[15] | 吴亚茹, 张振雨, 张扬泽, 吴甲民, 田冲, 黄海露, 林鑫, 史玉升. 造孔剂种类对数字光处理成形多孔Si3N4陶瓷性能的影响[J]. 机械工程学报, 2024, 60(11): 273-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||