[1] MA Ye, ZHENG Qiang, LIU Yang, et al. Self-powered one-stop and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring[J]. Nano Letters, 2016, 16(10):6042-6051.
[2] WANG Xianli, ZHANG Hanlu, WANG Zhonglin, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping[J]. Advanced Materials, 2016, 28(15):2896-2903.
[3] ZHANG Hulin, Yang Ya, WANG Zhonglin, et al. Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor[J]. Advanced Functional Materials, 2014, 24(10):1401-1407.
[4] YAO Haiyan, YUN Guohong, BAI Narsu, et al. Surface elasticity effect on the size-dependent elastic property of nanowires[J]. Journal of Applied Physics, 2012, 111(8):3506.
[5] 戴冰,于广滨,邵俊鹏,等. 单晶体氧化锌微/纳米带电阻与长度的特性研究[J]. 机械工程学报, 2016, 52(12):199-204. DAI Bing, YU Guangbin, SHAO Junpeng, et al. Properties of single crystal zinc oxide micro/nanobelt with resistance and length[J]. Journal of Mechanical Engineering, 2016, 52(12):199-204.
[6] WANG Lifen, TIAN Xuezeng, BAI Xuedong, et al. Dynamic nanomechanics of zinc oxide nanowires[J]. Applied Physics Letters, 2012, 100, 16:3110.
[7] SONG Jinhui, WANG Xudong, WANG Zhonglin, et al. Elastic property of vertically aligned nanowires[J]. Nano Letters, 2005, 5(10):1954-1958.
[8] CHEN C Q, YAN Y J. Size dependence of young's modulus in ZnO nanowires[J]. Physical Review Letters, 2006, 96(07):5505.
[9] RAVI Agrawal, PENG Bei. Elasticity size effects in ZnO nanowires-a combined experimental-computational approach[J]. Nano Letters, 2008, 8(11):3668-3674.
[10] JING Dayong, TIAN Chunguang, LIU Qingfei. Young's modulus of individual ZnO nanowires[J]. Materials Science & Engineering A, 2014, 610:1-4.
[11] NAPOLI M, BAMIEH B, TURNER K. A capacitive microcantilever:modelling, validation, and estimation using current measurements[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(2):319-326.
[12] GROSS, L. Recent advances in submolecular resolution with scanning probe microscopy[J]. Nature Chemistry, 2011, 3(4):273-278.
[13] CHRISTIAN W, WAGNER C, TEMIROV R. Direct imaging of intermolecular bonds in scanning tunneling microscopy[J]. Journal of the American Chemical Society, 2010, 132(34), 11864-11865.
[14] JONES J. On the determination of molecular fields. ii. from the equation of state of a gas[J]. Proceedings of the Royal Society of London, 1924, 106(738):463-477.
[15] GROSS L, MOHN F, MOLL N, et al. The chemical structure of a molecule resolved by atomic force microscopy[J]. Science, 2009, 325(5944):1110-1114.
[16] PONCHARAL P, WANG Zhonglin, UGARTE D, et al. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J]. Science, 1999, 283:1513-1516.
[17] FUKUMA T, KILPATRICK J I, JARVIS S P. Phase modulation atomic force microscope with true atomic resolution[J]. Review of Scientific Instruments, 2006, 77(12):123703.
[18] BLEVINS R D. Formulas for natural frequency and mode shape[M]. New York:Van Nostrand Reinhold, 1979.
[19] JAFFE J E, HARRISON N M, HESS A C. Ab Initio study of ZnO (101-0) surface relaxation[J]. Physical Review B, 1994, 49(16):11153-11158.
[20] DUKE C B, MAYER R J, POTON A, et al. Calculation of Low-energy-electron-diffration intensities from ZnO (101-0). Ⅱ. influence of calculational procedure, model potential, and second-layer structural distortions[J].Physical Review B, 1978, 18(8):4225-4240.
[21] SCHRÖER P, KRÜGER P, POLLMANN P. First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS[J]. Physical Review B, 1993, 47(12):6971-6980.
[22] STAEMMLER V, FINK K, MEYER B. Stabilization of polar ZnO surfaces:validating microscopic models by using co as a probe molecule[J]. Physical Review Letters, 2003, 90(10):106102.
[23] NEWNHAM R E, Structure-property relations[M]. New York:Springer-Verlag, 1975.
[24] HARRISON W A. Electronic structure and the properties of solids:the physical of the chemical bond[M]. San Francisco:Freeman, 1989.
[25] SUN C Q, TAY B K, ZENG X T, et al. Bond-orderbond-length-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid[J]. Journal of Physics:Condensed Matter, 2002, 14(34):7781-7795.
[26] WANG Penglei, FU Yongming, YU Binwei, et al. Realizing room-temperature self-powered ethanol sensing of ZnO nanowire arrays by combining their piezoelectric, photoelectric and gas sensing characteristics[J]. Journal of Materials Chemistry A, 2015, 3(7):3529-3535. |