[1] 单忠德. 无模铸造[M]. 北京:机械工业出版社,2017. SHAN Zhongde. Patternless casting[M]. Beijing:China Machine Press,2017.
[2] SHAN Zhongde,QIN Shaoyan,LIU Qian,et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry[J]. International Journal of Precision Engineering and Manufacturing,2012,13(7):1095-1100.
[3] DONG Xiaoli,LI Xinya,SHAN Zhongde,et al. Rapid manufacturing of sand molds by direct milling[J]. Tsinghua Science and Technology,2009,14(6):212-215.
[4] 白清顺,姚英学,PHILLIP B,等. 聚晶金刚石刀具加工强化复合地板时的切削性能及磨损机理研究[J]. 摩擦学报,2003,23(2):81-85. BAI Qingshun,YAO Yingxue,PHILLIP B,et al. Wear mechanism and cutting performance of polycrystalline diamond tool in machining high pressure laminated flooring[J]. Tribology,2003,23(2):81-85.
[5] MOSELEY S G,BOHN K P,GOEDICKEMEIER M. Core drilling in reinforced concrete using polycrystalline diamond (PCD) cutters:Wear and fracture mechanisms[J]. International Journal of Refractory Metals & Hard Materials,2009,27(2):394-402.
[6] 葛英飞,徐九华,傅玉灿. 高速铣削SiCp/Al复合材料时聚晶金刚石刀具的磨损机理[J]. 光学精密工程,2011,19(12):2907-2918 GE Yingfei,XU Jiuhua,FU Yucan. Wear mechanisms of PCD of SiCp/Al tool in high speed milling composites[J]. Optics and Precision Engineering,2011,19(12):2907-2918.
[7] YAN Gang,YUE Wen,MENG Dezhong,et al. Wear performances and mechanisms of ultrahard polycrystalline diamond composite material grinded against granite[J]. International Journal of Refractory Metals & Hard Materials,2016,54:46-53.
[8] WEI Xinliang,QI Lehua,ZHOU Jiming,et al. Tool wear orphologies and mechanisms for cutting Cf/Mg composites[J]. International Journal of Advanced Manufacturing Technology, 2016,86(1-4):613-619.
[9] 秦国华,谢文斌,王华敏. 基于神经网络与遗传算法的刀具磨损检测与控制[J]. 光学精密工程,2015,23(5):1314-1320. QIN Guohua,XIE Wenbin,WANG Huamin. Detection and control for tool wear based on neural network and genetic algorithm[J]. Optics and Precision Engineering,2015,23(5):1314-1320.
[10] SHI Dongfeng,GINDY N N. Tool wear predictive model based on least squares support vector machines[J]. Mechanical Systems & Signal Processing,2007,21(4):1799-1814.
[11] TAN Yefa,HE Long,WANG Xiaolong,et al. Tribological properties and wear prediction model of TiC particles reinforced Ni-base alloy composite coatings[J]. Transactions of Nonferrous Metals Society of China, 2014,24(8):2566-2573.
[12] ZHANG Haiyan,ZHANG Chen,ZHANG Jilin,et al. Tool wear model based on least squares support vector machines and Kalman filter[J]. Production Engineering,2014,8(1-2):101-109.
[13] GARCÍA-NIETO P J,GARCÍA-GONZALO E,VILÁN A J,et al. A new predictive model based on the PSO-optimized support vector machine approach for predicting the milling tool wear from milling runs experimental data[J]. International Journal of Advanced Manufacturing Technology,2016,86(1-4):769-780.
[14] 刘路,王太勇,蒋永翔,等. 基于超球面支持向量机的刀具磨损状态识别[J]. 农业机械学报,2011,42(1):218-222. LIU Lu,WANG Taiyong,JIANG Yongxiang,et al. Tool wear state recognition based on hyper-sphere support vector machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(1):218-222.
[15] 方开泰,刘民千,周永道. 试验设计与建模[M]. 北京:高等教育出版社,2011. FANG Kaitai,LIU Minqian,ZHOU Yongdao. Design and modeling of experiments[M]. Beijing:Higher Education Press,2011. |