• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (12): 29-38.doi: 10.3901/JME.2022.12.029

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

基于SVMBP的下肢外骨骼步态检测及识别研究

曾德政, 吕继亮, 屈盛官, 尹鹏, 李小强   

  1. 华南理工大学机械与汽车工程学院 广州 510000
  • 收稿日期:2021-09-06 修回日期:2022-01-23 出版日期:2022-06-20 发布日期:2022-09-14
  • 通讯作者: 屈盛官(通信作者),男,1966年出生,教授,博士,博士研究生导师。主要从事新金属材料的先进制造技术、成形装备的集成和智能制造技术、人工智能外骨骼机器人技术的科研和教学工作。E-mail:qusg@scut.edu.cnsg@scut.edu.cn
  • 作者简介:曾德政,女,1996年出生。主要从事人工智能外骨骼机器人及步态检测识别技术研究。E-mail:201821002525@mail.scut.edu.cn
  • 基金资助:
    特种车辆及驱动系统智能制造国家重点实验室开放资助项目(GZ2019KF001)

Research on Gait Detection and Recognition of Lower Limb Exoskeleton Based on SVMBP

ZENG Dezheng, Lü Jiliang, QU Shengguan, YIN Peng, LI Xiaoqiang   

  1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510000
  • Received:2021-09-06 Revised:2022-01-23 Online:2022-06-20 Published:2022-09-14

摘要: 下肢外骨骼机器人是一种用于辅助人体下肢运动的智能化可穿戴装置,而人体步态识别是实现外骨骼机器人智能化最重要的技术之一。研制出一种适用于下肢外骨骼机器人的步态检测系统,并将硬件系统集成于智能传感鞋中,小巧而实用;在此基础上以下肢助力外骨骼样机为试验平台,完成了人体步态数据采集试验。另外,将支持向量机(Support vector machine,SVM)和逆传播神经网络(Back propagation neural network,BPNN)算法模型进行优化和整合,提出了基于SVMBP的运动识别算法,试验结果表明基于SVMBP的下肢外骨骼机器人步态检测系统能够完成6路足底压力信号的采集与实时显示,SVMBP算法对步行相位的平均分类识别准确率达99.39%,其平均识别准确率高于单一的SVM和BPNN算法,对于步行中各相位的识别更稳定,增强了算法的可靠性并且提高了算法的识别准确性。

关键词: 智能传感鞋, 步态检测识别, 支持向量机, 神经网络, SVMBP模型, 下肢外骨骼

Abstract: Lower limb exoskeleton (LLEXO) robot is a kind of intelligent wearable device used to assist human lower extremity to achieve power movement. And human gait recognition is one of the most important technologies to realize the intelligence of exoskeleton robot. A gait detection (HG) system was proposed for lower extremity exoskeleton robots, which realized the integration of the device into smart sensor shoes, and it was compact and practical. On this basis, the LLEXO experimental prototype was used to was used to conduct human gait data collection experiments. Meanwhile, the SVMBP motion recognition algorithm was proposed, which was based on the integration of the advantages of the support vector machine (SVM) and back propagation neural network (BPNN) algorithm models. The experimental results show that the SVMBP-based LLEXO HG system c an complete 6 channel plantar pressure signal acquisition and real-time display. And the proposed SVMBP model had an average classification and recognition accuracy of 99.39% for gait data, the average recognition accuracy was higher than the single SVM and BPNN algorithm, and the recognition of each phase during walking was more stable, which enhanced the reliability of the algorithm and improves the recognition accuracy of the algorithm.

Key words: smart sensor shoes, gait detection and recognition, support vector machine, neural network, SVMBP model, lower limb exoskeleton

中图分类号: