[1] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991, 354(6348):56-58.
[2] CORNWELL C F, WILLE L T. Elastic properties of single-walled carbon nanotubes in compression[J]. Solid State Communications, 1997, 101(8):555-558.
[3] WEI Bingqing, VAJTAI R, AJAYAN P M. Reliability and current carrying capacity of carbon nanotubes[J]. Applied Physics Letters, 2001, 79(8):1172-1174.
[4] HONE J, WHITNEY M, ZETTL A. Thermal conductivity of single-walled carbon nanotubes[J]. Synthetic Metals, 1999, 103(4):2514-2516.
[5] GOU Jihua, MINAIE Bob, WANG Ben, et al. Computational and experimental study of interfacial bonding of single-walled nanotube reinforced composites[J]. Computational Materials Science, 2004, 31(3):225-236.
[6] FIEDLER B, GOJNY F H, WICHMANN M H G, et al. Fundamental aspects of nano-reinforced composites[J]. Composites Science & Technology, 2006, 66(16):3115-3125.
[7] 沈惠申. 功能梯度复合材料板壳结构的弯曲、屈曲和振动[J]. 力学进展, 2004, 34(1):53-60. SHEN Huishen. Bending, buckling and vibration of functionally graded plates and shells[J]. Advances in Mechanics, 2004, 34(1):53-60.
[8] NⅡNO M, HIRAI T, WATANABE R. Functionally gradient materials. In pursuit of super heat resisting materials for spacecraft[J]. Journal of the Japan Society for Composite Materials, 1987, 13(6):257-264.
[9] 曹志远.不同边界条件功能梯度矩形板固有频率解的一般表达式[J]. 复合材料学报, 2005, 22(5):172-177. CAO Zhiyuan. Unified expression of natural frequency solutions for functionally graded composite rectangular plates under various boundary conditions[J]. Acta Materiae Compositae Sinica, 2005, 22(5):172-177.
[10] GAO Liming, WANG Ji, ZHONG Zheng, et al. An analysis of surface acoustic wave propagation in functionally graded plates with homotopy analysis method[J]. Acta Mechanica, 2009, 208(3-4):249-258.
[11] 仲政,吴林志,陈伟球. 功能梯度材料与结构的若干力学问题研究进展[J]. 力学进展, 2010, 40(5):528-541. ZHONG Zheng, WU Lin Zhi, CHEN Wei Qiu. Progress in the study on mechanics problems of functionally graded materials and structures[J]. Advances in Mechanics, 2010, 40(5):528-541.
[12] FORMICA G, LACARBONARA W, ALESSI R. Vibrations of carbon nanotube-reinforced composites[J]. Journal of Sound & Vibration, 2010, 329(10):1875-1889.
[13] ARANI A G, MAGHAMIKIA S, MOHAMMADIMEHR M, et al. Buckling analysis of laminated composite rectangular plates reinforced by SWCNTs using analytical and finite element methods[J]. Journal of Mechanical Science & Technology, 2011, 25(3):809-820.
[14] SELIM B A, ZHANG L W, LIEW K M. Impact analysis of CNT-reinforced composite plates based on Reddy's higher-order shear deformation theory using an element-free approach[J]. Composite Structures, 2017, 170:228-242.
[15] ZHANG L W, LEI Z X, LIEW K M. Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach[J]. Composites Part B Engineering, 2015, 75:36-46.
[16] ZHANG L W, LEI Z X, LIEW K M. Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method[J]. Applied Mathematics & Computation, 2015, 256(C):488-504.
[17] ZHANG Shunqi, LI Yaxi, SCHMIDT R. Modeling and simulation of macro-fiber composite layered smart structures[J]. Composite Structures 2015, 126:89-100.
[18] ZHANG Shunqi, SCHMIDT R. Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations[J]. Composite Structures 2014, 112(3):345-357.
[19] ARDESTANI M. MEMAR, ZHANG L W, LIEW K M. Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 317:341-379. |