[1] 金学松,杜星,郭俊,等. 钢轨打磨技术研究进展[J]. 西南交通大学学报,2010,45(1):1-11. JIN Xuesong,DU Xing,GUO Jun,et al. State of arts of research on rail grinding[J]. Journal of Southwest Jiaotong University,2010,45(1):1-11. [2] 智少丹,李建勇,樊文刚,等. 钢轨打磨接触线模型研究[J]. 铁道学报,2013,35(10):94-99. ZHI Shaodan,LI Jianyong,FAN Wengang,et al. Research on contact line model for rail grinding[J]. Journal of the China Railway Society,2013,35(10):94-99. [3] ZHI S,ZAREMBSKI A M,LI J,et al. Towards a better understanding of the rail grinding mechanism[C]//ASME 2013 Rail Transportation Division Fall Technical Conference. Altoona:American Society of Mechanical Engineers,Rail Transportation Division RTD,2013:15-17. [4] 郭战伟. 基于轮轨蠕滑最小化的钢轨打磨研究[J]. 中国铁道科学,2011,32(6):9-15. GUO Zhanwei. Study of rail grinding based on wheel rail creep minimization[J]. China Railway Science,2011,32(6):9-15. [5] 刘月明,李建勇,蔡永林,等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学,2014,35(4):29-37. LIU Yueming,LI Jianyong,CAI Yonglin,et al. Current state and development trend of rail grinding technology[J]. China Railway Science,2014,35(4):29-37. [6] 聂蒙. 基于变参数气动结构的钢轨打磨恒功率控制技术研究[D]. 北京:北京交通大学,2015. NIE Meng. Research on constant-power control technology for rail grinding based on variable parameter pneumatic structure[D]. Beijing:Beijing Jiaotong University,2015. [7] 智少丹,李建勇,刘月明,等. 基于磨粒切削模型的钢轨打磨机理研究[J]. 中国铁道科学,2015,36(1):33-39. ZHI Shaodan,LI Jianyong,LIU Yueming,et al. Rail grinding mechanism based on grain cutting model[J]. China Railway Science,2015,36(1):33-39. [8] 智少丹,李建勇,蔡永林,等. 基于标准廓形钢轨的打磨模式机理[J]. 中南大学学报,2015(6):2027-2035. ZHI Shaodan,LI Jianyong,CAI Yonglin,et al. Mechanisms of rail grinding patterns based on standard rail profile[J]. Journal of Central South University:Nature Science,2015(6):2027-2035. [9] GU K K,LIN Q,WANG W J,et al. Analysis on the effects of rotational speed of grinding stone on removal behavior of rail ma-terial[J]. Wear,2015,342(3):52-59. [10] 顾凯凯,王文健,郭俊,等. 钢轨-磨石相互作用的摩擦学模拟试验研究[J]. 摩擦学学报,2015,32(2):154-159. GU Kaikai,WANG Wenjian,GUO Jun,et al. Tribological simulation experiment of interactions between rail and grinding stone[J]. Tribology,2015,32(2):154-159. [11] 言兰,融亦鸣,姜峰. 氧化铝砂轮地貌的量化评价及数学建模[J]. 机械工程学报,2011,47(17):179-186. YAN Lan,RONG Yiming,JIANG Feng. Quantitive evaluation and modeling of alumina grinding wheel surface topography[J]. Journal of Mechanical Engineering,2011,47(17):179-186. [12] MEZGHANI S,El MANSORI M. Abrasiveness properties assessment of coated abrasives for precision belt grinding[J]. Surface and Coatings Technology,2008,203(5):786-789. [13] 孔祥安,江晓禹,金学松. 固体接触力学[M]. 北京:中国铁道出版社,1999. KONG Xiangan,JIANG Xiaoyu,JIN Xuesong. Solid contact mechanics[M]. Beijing:China Railway Press,1999. [14] 吴昌林,丁和艳,陈义. 材料去除深度与磨粒的关系建模方法研究[J]. 中国机械工程,2011,22(3):300-304. WU Changlin,DING Heyan,CHEN Yi. Research on modeling method of relation between abrasive grain and material re-moval depth[J]. China Mechanical Engineering,2011,22(3):300-304. [15] 温诗铸. 摩擦学原理[M]. 北京:清华大学出版社,1990. WEN Shizhu. Principles of tribology[M]. Beijing:Tsinghua University Press,1990. [16] ZHAO Y,MAIETTA D M,CHANG L. An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow[J]. Journal of Tribology,2000,122(1):86-93. [17] JOURANI A,HAGÈGE B,BOUVIER S,et al. Influence of abrasive grain geometry on friction coefficient and wear rate in belt finish-ing[J]. Tribology International,2013,59:30-37. [18] LIU Z,SUN J,SHEN W. Study of plowing and friction at the surfaces of plastic deformed metals[J]. Tribology International,2002,35(8):511-522. [19] JIANG J,SHENG F,REN F. Modelling of two-body abrasive wear under multiple contact conditions[J]. Wear,1998,217(1):35-45. [20] HOKKIRIGAWA K,KATO K,LI Z Z. The effect of hardness on the transition of the abrasive wear mechanism of steels[J]. Wear,1988,123(2):241-251. [21] HOKKIRIGAWA K,KATO K. An experimental and theoretical investigation of ploughing,cutting and wedge formation during abrasive wear[J]. Tribology International,1988,21(1):51-57. [22] WANG W,LI J,FAN W,et al. Characteristic quantitative evaluation and stochastic modeling of surface topography for zirconia alumina abrasive belt[J]. International Journal of Advanced Manufacturing Technology,2017,89(9-12):3059-3069. |