• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2017, Vol. 53 ›› Issue (24): 96-103.doi: 10.3901/JME.2017.24.096

• 仪器科学与技术 • 上一篇    下一篇

扫码分享

一种基于复合谱与关联熵融合的特征提取方法

孙健1, 李洪儒2   

  1. 1. 中国洛阳电子装备试验中心 洛阳 471003;
    2. 陆军工程大学石家庄校区 石家庄 050003
  • 收稿日期:2016-10-15 修回日期:2017-07-20 发布日期:2017-12-20
  • 通讯作者: 李洪儒(通信作者),男,1961年出生,博士,教授,博士研究生导师。主要研究方向为装备状态监测与故障预测。E-mail:lihr168@sohu,com
  • 作者简介:孙健,男,1987年出生,博士。工程师。主要研究方向为信号处理与分析。E-mail:hehetcs@163.com
  • 基金资助:
    国家自然科学基金资助项目(51275524)。

Method for Feature Extraction Based on Composite Spectrum and Relative Entropy Fusion

SUN Jian1, LI Hongru2   

  1. 1. Luoyang Electronic Equipment Test Center of China, Luoyang 471003;
    2. The Shijiazhuang Branch of The Army Engineering University, Shijiazhuang 050003
  • Received:2016-10-15 Revised:2017-07-20 Published:2017-12-20

摘要: 液压泵特征提取是实现故障预测的关键环节。针对液压泵退化特征不理想的问题,提出一种基于改进复合谱与关联熵融合的特征提取方法。首先,对传统CS算法进行改进,对多通道振动信号进行融合,实现对特征信息的综合利用,并分别提取Shannon定义下和Tsallis定义下的DCS功率谱熵和DCS奇异熵作为特征;在此基础上,提出基于关联熵的融合方法,将所提取的特征融合为一个全新特征,作为液压泵退化特征,提高特征的简洁度;最后,利用液压泵性能退化试验所采集振动信号,验证了该方法的有效性。

关键词: 复合谱, 退化特征提取, 信息融合, 信息熵

Abstract: An feature extraction of the key step in prognostic of hydraulic pump. Since vibration signals of hydraulic pump are complex and degradation features are hard to extract, a novel method based upon DCS and relation entropy is proposed. First of all, in order to make reasonable use of feature information, earlier CS is modified by DCT and the DCS algorithm is presented to make fusion of multi-channel vibration signals. And DCS power entropy and singular entropy, which are relatively defined in Shannon entropy and Tsallis entropy, are extracted as features. On this basement, the feature fusion method based on relation entropy is proposed to remain original features performances and improve conciseness. According to max relation entropy criterion and gradual fusion strategy, the four extracted features are fused into a new one, which is considered as degradation feature. Finally, the proposed method is verified by vibration signals sampled from hydraulic pump degradation experiment.

Key words: composite spectrum, degradation feature extraction, information fusion, relative entropy

中图分类号: