[1] GRONITZKI M, POLL G W G. Optimization of the tribological performance of rectangular seals in automotive transmissions[J]. Proc IMechE Part J:Journal of Engineering Tribology, 2007, 221(3):259-270. [2] 赵星宇,刘莹,高志,等. 自适应接触式机械密封性能研究[J]. 机械工程学报, 2015, 51(15):9-19. ZHAO Xingyu, LIU Ying, GAO Zhi, et al. Sealing performance of adaptive contacting mechanical seal[J]. Journal of Mechanical Engineering, 2015, 51(15):9-19. [3] JAISWAL R, JHA R A, KARKI A, et al. Structural and thermal analysis of disc brake using solidworks and ansys[J]. International Journal of Mechanical Engineering and Technology, 2016, 7(1):67-77. [4] OSTERMEYER G P, BODE K. A comprehensive approach for the simulation of heat and heat-induced phenomena in friction materials[J]. Wear, 2014, 311(1-2):47-56. [5] ABDULLAH M A S. Transient behavior of initial perturbation in multidisk clutch system[J]. Tribology Transactions, 2014, 57(6):1164-1171. [6] 孟德建,张立军,阮丞,等. 摩擦引起的制动器热点问题综述[J]. 同济大学学报, 2014, 42(8):1203-1210. MENG Dejian, ZHANG Lijun, RUAN Cheng, et al. Literature survey of friction-induced hot spots in brakes[J]. Journal of Tongji University, 2014, 42(8):1203-1210. [7] AL-SHABIBI A M, BARBER J R. Transient solution of a thermoelastic instability problem using a reduced order model[J]. International Journal of Mechanical Sciences, 2002, 44(3):451-464. [8] ZHAO J X, MA B, LI H Y, et al. The effect of lubrication film thickness on the thermoelastic instability under fluid lubricating condition[J]. Wear, 2013, 303(1):146-153. [9] JANG J Y, KHONSARI M M. On the formation of hot spots in wet clutch systems[J]. Journal of Tribology, 2002, 124(2):336-345. [10] DU S Q, ZAGRODZKI P, BARBER J R, et al. Finite element analysis of frictionally-excited thermoelastic instability[J]. Journal of Thermal Stresses, 1997, 20(2):185-201. [11] ABBASI S, TEIMOURIMANESH S, VERNERSSON T, et al. Temperature and thermoelastic instability at tread braking using cast iron friction material[J]. Wear, 2014, 314(1):171-180. [12] PANIER S, DUFRENOY P, WEICHERT D. An experimental investigation of hot spots in railway disc brakes[J]. Wear, 2004, 256(7):764-773. [13] MAJCHERCZAK D, DUFRENOY P, BERTHIER Y. Tribological, thermal and mechanical coupling aspects of the dry sliding contact[J]. Tribology International, 2007, 40(5):834-843. [14] DECUZZI P, CIAVARELLA M, MONNO G. Frictionally excited thermoelastic instability in multi-disk clutches and brakes[J]. Journal of Tribology, 2001, 123(4):865-871. [15] ZAGRODZKI P. Thermoelastic instability in friction clutches and brakes-transient modal analysis revealing mechanisms of excitation of unstable modes[J]. International Journal of Solids and Structures, 2009, 45(11-12):2463-2476. [16] YI Y B, DU S Q, BARBER J R, et al. Effect of geometry on thermoelastic instability in disk brakes and clutches[J]. Journal of Tribology, 1999, 12(4):661-666. [17] CRISTOL-BULTHÉ A L, YANNICK D, GÉRARD D. Coupling between friction physical mechanisms and transient thermal phenomena involved in pad-disc contact during railway braking[J]. Wear, 2007, 263(7):1230-1242. [18] GRAF M, OSTERMEYER G P. Hot bands and hot spots:Some direct solutions of continuous thermoelastic system with friction[J]. Physical Mesomechanics, 2012, 15(5-6):306-315. [19] YEO T, BARBER J R. Finite element analysis of the stability of static thermoelastic contact[J]. Journal of Thermal Stresses, 1996, 19(2):169-184. [20] GONG R, LIU M, ZHANG H, et al. Experimental investigation on frictional behavior and sealing performance of different composites for seal application[J]. Wear, 2015, 342(11):334-339. [21] LEE K, BARBER J R. An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application[J]. Journal of Tribology, 1994, 116(3):409-414. [22] 宫燃,车华军,李洪武,等. 等温密封环摩擦状态演变预测与试验研究[J]. 机械工程学报, 2011, 47(17):66-71. GONG Ran, CHE Huajun, LI Hongwu, et al. Prediction and experimental research on evolution for frictional contact of isothermal sealing ring[J]. Journal of Mechanical Engineering, 2011, 47(17):66-71. |