• CN:11-2187/TH
  • ISSN:0577-6686

›› 2013, Vol. 49 ›› Issue (11): 128-134.

• 论文 • 上一篇    下一篇

扫码分享

径向基模型的不确定性模型区间修正与确认

何成;陈国平;何欢   

  1. 南京航空航天大学机械结构力学及控制国家重点实验室;南京航空航天大学振动工程研究所
  • 发布日期:2013-06-05

Interval Model Updating and Validation with Uncertainty Based on the Radial Basis Function

HE Cheng;CHEN Guoping;HE Huan   

  1. The State Key Laboratory of Mechanics and Control for Mechanical Structures, Nanjing University of Aeronautics and Astronautics Institute of Vibration Engineering Research, Nanjing University of Aeronautics and Astronautics
  • Published:2013-06-05

摘要: 研究基于径向基(Radial basis function, RBF)模型不确定性结构动力学模型的非概率型区间修正方法。针对响应不确定性问题,以修正参数为变量,构造基于RBF的响应误差函数,通过寻求使误差函数取最小值的修正参数,将修正问题转化为优化问题,并从理论角度出发,利用RBF模型结合遗传算法给出修正后的参数区间描述方式,介绍具体实施步骤;而后将该方法分别用于考虑不确定性因素的数值算例和实际螺栓连接结构中。研究结果表明,采用该方法获得的参数边界与真实参数边界重合度较高,通过Monte-Carlo模拟对修正后结构与确认结构的响应预报与试验相吻合,验证所提出的修正方法的有效性与实用性;另外由于在实际问题中试验测试噪声不可避免,使得部分试验测试点处于预报响应空间之外,此时采用区间方式对响应进行预报效果较好。

关键词: 不确定性, 径向基模型, 模型修正, 区间分析, 响应预报

Abstract: The problem of interval model updating, with test structure variability is formulated. Constructing the objective function of the optimization problem, which is the residuals of natural frequencies of structure with weighting factors, based on radial basis function (RBF) and genetic algorithm, to infer the method of model uncertainty quantification and propagation from the aspect of theoretical perspective, and an iterative procedure of the interval model updating approach is given. Then, the method is validated by a three degree of freedom mass-spring system and bolt connection structures. Results show that the updated hypercube of uncertain parameters is in good agreement with the true hypercube, and the predictive space of responses, which is simulated by using Monte Carlo simulation in parameter rang, have very slight difference with the test one, they are demonstrated the accuracy and practicality of this method. In addition, the prediction range would be more conservative and reliable by using interval updating with irreducible uncertain measured data, since the noises are unavoidable in the process of test.

Key words: Interval analysis, Model updating, Prediction, Radial basis function model, Uncertainty analysis

中图分类号: