[1] 程锦, 叶虎强, 谭建荣, 等. 三维CAD技术研究进展及其发展趋势综述[J]. 机械工程学报, 2023, 59(23):1-28. CHENG Jin, YE Huqiang, Tan Jianrong, et al. Review of research progress and development trends of 3D CAD technology[J]. Journal of Mechanical Engineering, 2023, 59(23):1-28. [2] Joint Technical Committee ISO/IEC JTC 1, Information technology, Subcommittee SC 7, Software and systems engineering. Systems and software engineering - Systems and software Quality Requirements and Evaluation (SQuaRE) - System and software quality models[S]. Geneva:International Organization for Standardization/ International Electrotechnical Commission, ISO/IEC 25010, 2011. [3] 程锦, 叶虎强, 冯劲松, 等. 三维CAD软件性能自动化测试与变粒度可视评价[J]. 西安交通大学学报, 2023, 57(8):92-104. CHENG Jin, YE Huqiang, FENG Jingsong, et al. Automatic testing and variable-granularity visual evaluation of the performance of 3D CAD software[J]. Journal of Xi'an Jiaotong University, 2023, 57(8):92-104. [4] SOUIFI A, BOULANGER Z C, ZOLGHADRI M, et al. Uncertainty of key performance indicators for Industry 4.0:A methodology based on the theory of belief functions[J]. Computers in Industry, 2022, 140:103666. [5] LI Deyi, LIU Changyu, GAN Wenyan. A new cognitive model:Cloud model[J]. International Journal of Intelligent Systems, 2009, 24(3):357-375. [6] GAO Fei. An integrated risk analysis method for tanker cargo handling operation using the cloud model and DEMATEL method[J]. Ocean Engineering, 2022, 266:113021. [7] YU Jianxing, ZENG Qingze, YU Yang, et al. Failure mode and effects analysis based on rough cloud model and MULTIMOORA method:Application to single-point mooring system[J]. Applied Soft Computing, 2023, 132:109841. [8] ZHANG Kai, YU Xiaodong, LIU Shulin, et al. Wind power interval prediction based on hybrid semi-cloud model and nonparametric kernel density estimation[J]. Energy Reports, 2022, 8:1068-1078. [9] 董兴辉, 张鑫淼, 张光, 等. 基于云模型的风电机组输出功率特性分析[J]. 机械工程学报, 2017, 53(22):198-205. DONG Xinghui, ZHANG Xinmiao, ZHANG Guang, et al. Analysis of wind turbine output power characteristic based on cloud model[J]. Journal of Mechanical Engineering, 2017, 53(22):198-205. [10] ZHAO Yanlin, YANG Jianhong, FAES M G R, et al. The sub-interval similarity:A general uncertainty quantification metric for both stochastic and interval model updating[J]. Mechanical Systems and Signal Processing, 2022, 178:109319. [11] ZENG Linjun, XU Jiazhu, WU Min, et al. Day-ahead interval optimization for CCHP system considering uncertainty of wind power and PV[J]. International Journal of Electrical Power & Energy Systems, 2022, 138:107895. [12] ZHANG Yachao, HUANG Zhanghao, ZHENG Feng, et al. Interval optimization based coordination scheduling of gas–electricity coupled system considering wind power uncertainty, dynamic process of natural gas flow and demand response management[J]. Energy Reports, 2020, 6:216-227. [13] ZHENG Junjun, OKAMURA H, DOHI T. A transient interval reliability analysis for software rejuvenation models with phase expansion[J]. Software Quality Journal, 2020, 28(1):173-194. [14] YUE Chuan. A novel approach to interval comparison and application to software quality evaluation[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2018, 30(5):583-602. [15] YU Dejian, KOU Gang, XU Zeshui, et al. Analysis of collaboration evolution in AHP research:1982–2018[J]. International Journal of Information Technology & Decision Making, 2021, 20(01):7-36. [16] WU Yunna, ZHANG Ting. Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model[J]. Energy, 2021, 223:120057. [17] KABIR S, PAPADOPOULOS Y. Applications of Bayesian networks and Petri nets in safety, reliability, and risk assessments:A review[J]. Safety science, 2019, 115:154-175. [18] 宋元章, 沈湘衡, 李洪雨. 利用并行神经网络进行航天软件质量评价[J].哈尔滨工程大学学报, 2020, 41(4):595-600. SONG Yuanzhang, SHEN Xiangheng, LI Hongyu. Quality evaluation of aerospace software using parallel neural networks[J]. Journal of Harbin Engineering University, 2020, 41(4):595-600. [19] YANG Yangyu, WANG Hechuang, XIN Yanhui. Grey relational analysis model software quality assessment with triangular fuzzy information[J]. International Journal of Knowledge-based and Intelligent Engineering Systems, 2017, 21:97-102. [20] PUZOVIC S, VASOVIC J V, RADOJICIC M, et al. An integrated MCDM approach to PLM software selection[J]. Acta Polytechnica Hungarica, 2019, 16(4):45-65. [21] ZHAO Yiding, LI Zhimin, ZHANG Xiguang. Models for software quality evaluation with fuzzy number intuitionistic fuzzy information[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(3):1977-1985. [22] KIM S H, KIM W J. Evaluation of software quality-in-use attributes based on analysis network process[J]. Cluster Computing, 2019, 22(S1):2101-2114. [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 25108-2010三维CAD软件功能规范[S]. 北京:中国标准出版社, 2010. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 25108-2010 Function specification for three-dimensional CAD Software[S]. Beijing:Standards Press of China, 2010. [24] 杨放春, 龙湘明. 软件非功能属性研究[J]. 北京邮电大学学报, 2004, 27(3):1-12. YANG Fangchun, LONG Xiangming. An overview on software non-functional properties research[J]. Journal of Beijing University of Posts and Telecommunications, 2004, 27(3):1-12. [25] 叶仕俊, 张鹏程, 吉顺慧, 等. 人工智能软件系统的非功能属性及其质量保障方法综述[J]. 软件学报, 2023, 34(1):103-129. YE Shijun, ZHANG Pengcheng, JI Shunhui, et al. Survey on non-functional attributes for AI-enabled software systems and quality assurance methods[J], Journal of Software, 2023, 34(1):103-129. |