• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 274-285.doi: 10.3901/JME.2025.21.274

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

基于Kresling折纸的力位组合约束可展支撑机构动力学研究

畅博彦1,2, 高宇晗1, 金国光1,2, 莫帅3, 周杨1   

  1. 1. 天津工业大学机械工程学院 天津 300387;
    2. 天津市现代机电装备技术重点实验室 天津 300387;
    3. 广西大学特色金属材料与组合结构全寿命安全国家重点实验室 南宁 530004
  • 收稿日期:2025-01-13 修回日期:2025-06-12 发布日期:2025-12-27
  • 作者简介:畅博彦,男,1985年出生,博士,副教授,博士研究生导师。主要研究方向为机构学和机械系统动力学。E-mail:mmts_tjpu@126.com
    高宇晗,男,2001年出生,硕士研究生。主要研究方向为折纸机构学和动力学。E-mail:17333871725@163.com
    金国光(通信作者),男,1963年出生,博士,教授,博士研究生导师。主要研究方向为机械设计及理论、机械系统动力学与控制。E-mail:jinguoguang@tiangong.edu.cn
    莫帅,男,1987年出生,博士,教授,博士研究生导师。主要研究方向为机械传动系统动力学。E-mail:moshuai2010@163.com
    周杨,男,1996年出生,博士研究生。主要研究方向为变胞机构结构学、运动学和动力学。E-mail:18740565893@163.com
  • 基金资助:
    国家自然科学基金资助项目(52265004, 52005368)。

Research on Dynamics of a Deployable Mechanism with Force and Position Constrains Based on Kresling Origami

CHANG Boyan1,2, GAO Yuhan1, JIN Guoguang1,2, MO Shuai3, ZHOU Yang1   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387;
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387;
    3. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004
  • Received:2025-01-13 Revised:2025-06-12 Published:2025-12-27

摘要: 将Kresling折纸模型与变胞原理相结合,设计出一种具有“易展难压”特性的可展支撑机构。首先,基于约束螺旋理论和空间几何理论,分析山折支链与谷折支链的约束螺旋系及其反螺旋,发现山折机构与谷折机构均具有一个变节距螺旋运动自由度,但由于二者的节距不同,当山折支链和谷折支链布置在同一机构中时,将得到自由度为零的“难展难压”的支撑结构;其次,通过在谷折支链中引入变胞运动副的方式,设计得到三种“易展难压”的可展支撑机构,以6U1U1/6(P)U2U2机构为研究对象,基于欧拉梁理论建立机构支撑状态下的静力学分析模型,得到抗压刚度最优时山折支链和谷折支链刚度系数应满足的条件,并以此为基础对机构的结构参数进行优化;最后,推导出机构总势能与总动能的表达式,建立可展支撑机构的动力学模型并对不同初始条件下机构的运动路径进行数值计算与虚拟仿真。研究结果表明,机构具有双稳态特性和易展难压特性,所得结论可为高刚度大承载折展机构的设计提供理论与方法支撑。

关键词: 折纸, 可展支撑机构, 螺旋理论, 欧拉梁理论, 动力学

Abstract: Combining the Kresling origami model with metamorphosis, a deployable supporting mechanism with characteristics of easy deployment but hard collapse is designed. Firstly, the constrained screw systems of mountain crease limbs and valley crease limbs are determined by using the constrained screw theory and spatial geometry theory. Both the MCM and VCM allow screw motion along Z-axis but with different pitches which results in a supporting structure with hard deployment and hard collapse characteristics when MCM is arranged with VCM together. Secondly, three deployable supporting mechanisms with easy deployment but hard collapse characteristics are proposed by introducing variable constraint joints into the valley crease limbs. A general representative parallel mechanism 6U1U1/6(P)U2U2 is selected as the main focus to reveal the relationship between the load and the deformation based on Euler beam theory. The stiffness matrix is established and expressed as functions of geometry parameters which can be utilized to determine the optimal inclined angle of supporting limbs. Finally, selective and easy deployability with bistable states are analyzed and demonstrated by experiments and dynamic simulations. The results obtained can provide new insight into the mechanical design of deployable structures with heavy load-bearing capacity.

Key words: origami, deployable supporting mechanism, screw theory, Euler beam theory, dynamics

中图分类号: