机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 18-37.doi: 10.3901/JME.2025.21.018
• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇
李博1,2, 尹彦琦1,2, 吴业辉1,2, 张毅1,2, 马付雷3, 白瑞玉1,2, 姚家强1,2, 陈贵敏1,2
收稿日期:2025-03-31
修回日期:2025-08-15
发布日期:2025-12-27
作者简介:李博,男,1983年出生,博士,教授,博士研究生导师。主要研究方向为超材料与软体机器人。E-mail:liboxjtu@xjtu.edu.cn基金资助:LI Bo1,2, YIN Yanqi1,2, WU Yehui1,2, ZHANG Yi1,2, MA Fulei3, BAI Ruiyu1,2, YAO Jiaqiang1,2, CHEN Guimin1,2
Received:2025-03-31
Revised:2025-08-15
Published:2025-12-27
摘要: 多稳态特性是一种特殊的非线性力学现象。当一个系统具有多稳态特性,则意味着它存在多个稳定平衡态(能量取得局部极小值的状态),在这些状态下,即使受到外界小的扰动系统也能够在无能量输入条件下实现状态自保持。多稳态可表现出丰富多样的力学特性/行为,如负刚度、自平衡、抗扰动等,在航空航天、智能机器人、生物医学等领域逐渐展现出巨大的应用价值,近年来吸引了大量的研究人员。回顾了这些年多稳态机构与结构的典型研究成果:首先从柔顺机构、折纸结构、剪纸结构、软材料以及张拉整体结构等五个方面总结了不同多稳态设计的机构/结构原理、构型特征和设计方法;然后,对多稳态机构/结构在多种应用场景下的典型应用进行归纳介绍;最后对未来多稳态机构/结构的发展趋势进行了展望,旨在为多稳态机构/结构的设计提升与应用拓宽提供新的思路。
中图分类号:
李博, 尹彦琦, 吴业辉, 张毅, 马付雷, 白瑞玉, 姚家强, 陈贵敏. 多稳态机构/结构研究进展[J]. 机械工程学报, 2025, 61(21): 18-37.
LI Bo, YIN Yanqi, WU Yehui, ZHANG Yi, MA Fulei, BAI Ruiyu, YAO Jiaqiang, CHEN Guimin. Research Progress of Multistable Mechanisms/Structures[J]. Journal of Mechanical Engineering, 2025, 61(21): 18-37.
| [1] HOWELL L L. 柔顺机构学[M]. 余跃庆,译. 北京:高等教育出版社,2007. HOWELL L L. Compliant mechanisms[M]. Translated by YU Yueqing. Beijing:Higher Education Press,2007. [2] HOWELL L L,MAGLEBY S P,OLSEN B M. 柔顺机构设计理论与实例[M]. 陈贵敏,于靖军,马洪波,译. 北京:高等教育出版社,2015. HOWELL L L,MAGLEBY S P,OLSEN B M. Handbook of compliant mechanisms[M]. Translated by CHEN Guimin,YU Jingjun,MA Hongbo. Beijing:Higher Education Press,2015. [3] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报,2015,51(13):53-68. YU Jingjun,HAO Guangbo,CHEN Guimin,et al. State-of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering,2015,51(13):53-68. [4] 邱海,方虹斌,徐鉴. 多稳态串联折纸结构的非线性动力学特性[J]. 力学学报,2019,51(4):1110-1121. QIU Hai,FANG Hongbin,XU Jian. Nonlinear dynamical characteristics of a multi-stable series origami structure[J]. Chinese Journal of Theoretical and Applied Mechanics,2019,51(4):1110-1121. [5] 靳艳飞,许鹏飞,李永歌,等. 多稳态动力系统中随机共振的研究进展[J]. 力学进展,2023,53(2):357-394. JIN Yanfei,XU Pengfei,LI Yongge,et al. Stochastic resonance of multi-stable dynamical systems:A review[J]. Advances in Mechanics,2023,53(2):357-394. [6] SÖNMEZ Ü,TUTUM C C. A compliant bistable mechanism design incorporating elastica buckling beam theory and pseudo-rigid-body model[J]. Journal of Mechanical Design,2008,130(4):042304. [7] ZHAO J,JIA J Y,HE X P,et al. Post-buckling and snap-through behavior of inclined slender beams[J]. Journal of Applied Mechanics-Transactions of the ASME,2008,75(4):041020. [8] JENSEN B D,PARKINSON M B,KURABAYASHI K,et al. Design optimization of a fully-compliant bistable micro-mechanism[C]//Proceedings of the ASME 2001 International Mechanical Engineering Congress and Exposition. New York:ASME,2001:357-363. [9] QIU J,LANG J H,SLOCUM A H. A curved-beam bistable mechanism[J]. Journal of Microelectromechanical Systems,2004,13(2):137-146. [10] TISSOT-DAGUETTE L,SCHNEEGANS H,THALMANN E,et al. Analytical modeling and experimental validation of rotationally actuated pinned-pinned and fixed-pinned buckled beam bistable mechanisms[J]. Mechanism and Machine Theory,2022,174:104874. [11] MASTERS N D,HOWELL L L. A self-retracting fully compliant bistable micromechanism[J]. Journal of Microelectromechanical Systems,2003,12(3):273-280. [12] WILCOX D L,HOWELL L L. Double-tensural bistable mechanisms (DTBM) with on-chip actuation and spring-like post-bistable behavior[C]//Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Long Beach:ASME,2005:537-546. [13] WILCOX D L,HOWELL L L. Fully compliant tensural bistable micromechanisms (FTBM)[J]. Journal of Microelectromechanical Systems,2005,14(6):1223-1235. [14] CHEN G M,WU H Q,LI B,et al. Fully compliant bistable mechanisms with enhanced pitch stiffness[J]. Mechanical Systems and Signal Processing,2021,161:107926. [15] YAN L L,LU S S,LIU P B. Development of a fully compliant bistable mechanism based on circular beams with enhanced pitch stiffness[J]. Applied Sciences-Basel,2023,13(3):1642. [16] OH Y S,KOTA S. Synthesis of multistable equilibrium compliant mechanisms using combinations of bistable mechanisms[J]. Journal of Mechanical Design,2009,131(2):021002. [17] LUHARUKA R,HESKETH P J. Design of fully compliant,in-plane rotary,bistable micromechanisms for mems applications[J]. Sensors and Actuators a-Physical,2007,134(1):231-238. [18] JEONG H Y,AN S C,SEO I C,et al. 3d printing of twisting and rotational bistable structures with tuning elements[J]. Sci. Rep.,2019,9(1):324. [19] JENSEN B D,HOWELL L L,SALMON L G. Design of two-link,in-plane,bistable compliant micro-mechanisms[J]. Journal of Mechanical Design,1999,121(3):416-423. [20] JENSEN B D,HOWELL L L. Identification of compliant pseudo-rigid-body four-link mechanism configurations resulting in bistable behavior[J]. Journal of Mechanical Design,2003,125(4):701-708. [21] JENSEN B D,HOWELL L L. Bistable configurations of compliant mechanisms modeled using four links and translational joints[J]. Journal of Mechanical Design,2004,126(4):657-666. [22] ALFATTANI R,LUSK C. A lamina-emergent frustum using a bistable collapsible compliant mechanism[J]. Journal of Mechanical Design,2018,140(12):125001. [23] JIANG J Y,LIN S,WANG H C,et al. The synthesis method of series-based bistable compliant mechanisms for rigid-body guidance problem based on geometrical similarity transformation of pole maps[J]. Journal of Mechanical Design,2024,146(10):103301. [24] PENDLETON T M,JENSEN B D. Development of a tristable compliant mechanism[C]//Proceedings of the 12th IFToMM World Congress. Besançon:Springer,2007:A835. [25] CHEN G M,ATEN Q T,ZIRBEL S,et al. A tristable mechanism configuration employing orthogonal compliant mechanisms[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2010,2(1):014501. [26] HALVERSON P A,HOWELL L L,MAGLEBY S P. Tension-based multi-stable compliant rolling-contact elements[J]. Mechanism and Machine Theory,2010,45(2):147-156. [27] CHEN G M,ZHANG S Y,LI G. Multistable behaviors of compliant sarrus mechanisms[J]. Journal of Mechanisms and Robotics-Transactions of the ASME,2013,5(2):021005. [28] CHEN G M,WILCOX D L,HOWELL L L. Fully compliant double tensural tristable micromechanisms (dttm)[J]. Journal of Micromechanics and Microengineering,2009,19(2):025011. [29] CHEN G M,GOU Y J,ZHANG A M. Synthesis of compliant multistable mechanisms through use of a single bistable mechanism[J]. Journal of Mechanical Design,2011,133(8):081007. [30] HAN J S,MüLLER C,WALLRABE U,et al. Design,simulation,and fabrication of a quadstable monolithic mechanism with x- and y-directional bistable curved beams[J]. Journal of Mechanical Design,2006,129(11):1198-1203. [31] WANG D A,CHEN J H,PHAM H T. A tristable compliant micromechanism with two serially connected bistable mechanisms[J]. Mechanism and Machine Theory,2014,71:27-39. [32] OH Y. Synthesis of multistable equilibrium compliant mechanisms[D]. Ann Arbor,Michigan:University of Michigan,2008. [33] TRAN H V,NGO T H,TRAN N D K,et al. A threshold accelerometer based on a tristable mechanism[J]. Mechatronics,2018,53:39-55. [34] LI L,LI B,CHEN G. A non-transit fully compliant tristable mechanism capable of direct switching between every two stable positions[J]. Mechanical Systems and Signal Processing,2021:108597. [35] 勾燕洁,张守银,陈贵敏. 一种全柔顺六稳态机构的设计[J]. 机械工程学报,2015,51(7):61-66.GOU Yanjie,ZHANG Shouyin,CHEN Guimin. Design approach for a fully compliant sexastable mechanism[J]. Journal of Mechanical Engineering,2015,51(7):61-66. [36] 勾燕洁. 基于平面连杆构型的多稳态柔顺机构综合与设计方法[D]. 西安:西安电子科技大学,2015.GOU Yanjie. Synthesis and design approaches for compliant multistable mechanisms based on planar linkages[D]. Xi’an:Xidian University,2015. [37] HU N,BAI R Y,LI B,et al. Quadristability achieved by torsion-bending antagonistic action in a lamina emergent torsional joint[J]. Mechanism and Machine Theory,2024,204:105839. [38] LIANG H T,YANG Z D,ZHANG L W,et al. The design of spatial compliant mechanisms with distributed multi-stability based on post-buckled cylindrical compliant beams[J]. Mechanical Systems and Signal Processing,2025,228:112365. [39] HANNA B H,LUND J M,LANG R J,et al. Waterbomb base:A symmetric single-vertex bistable origami mechanism[J]. Smart Materials and Structures,2014,23(9):094009. [40] FLORES J,STEIN-MONTALVO L,ADRIAENSSENS S. Effect of crease curvature on the bistability of the origami waterbomb base[J]. Extreme Mechanics Letters,2022,57:101909. [41] LI Y,PELLEGRINO S. A theory for the design of multi-stable morphing structures[J]. Journal of the Mechanics and Physics of Solids,2020,136:103772. [42] LIU K,TACHI T,PAULINO G H. Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces[J]. Nature Communications,2019,10(1):4238. [43] CHOI G P T,DUDTE L H,MAHADEVAN L. Programming shape using kirigami tessellations[J]. Nature Materials,2019,18(9):999-1004. [44] ROJAS S,RILEY K S,ARRIETA A F. Multistable bioinspired origami with reprogrammable self-folding[J]. Journal of the Royal Society Interface,2022,19(195):20220426. [45] WANG L C,SONG W L,ZHANG Y J,et al. Active reconfigurable tristable square-twist origami[J]. Advanced Functional Materials,2020,30(13):1909087. [46] YIN Y Q,LI B,HU Y Z,et al. A unified cut topology that endows programmable bistability in modular kirigami morphing structures[J]. Cell Reports Physical Science,2024,5(12):102335. [47] ZHANG Q,PAN N,LIU S,et al. Self-locking kirigami surfaces via controlled stretching[J]. Communications Engineering,2024,3(1):26. [48] CHOI G P T,DUDTE L H,MAHADEVAN L. Compact reconfigurable kirigami[J]. Physical Review Research,2021,3(4):043030. [49] PENG Y C,NILOY I,KAM M,et al. Programming bistability in geometrically perturbed mechanical metamaterials[J]. Physical Review Applied,2024,22(1):014073. [50] MEEUSSEN A S,BORDIGA G,CHANG A X,et al. Textile hinges enable extreme properties of kirigami metamaterials[J]. Advanced Functional Materials,2025,35(9):2415986. [51] KIM E H,PARK K. Design optimisation of kirigami-based auxetic metamaterials with multistability and shape-morphing capability[J]. Virtual and Physical Prototyping,2025,20(1):2450286. [52] JIANG C G,RIST F,WANG H,et al. Shape-morphing mechanical metamaterials[J]. Computer-Aided Design,2022,143:103146. [53] CHEN T,PANETTA J,SCHNAUBELT M,et al. Bistable auxetic surface structures[J]. Acm Transactions on Graphics,2021,40(4):39. [54] YIN Y Q,HU Y Z,YU Y,et al. Inverse design of multistable kirigami metamaterial via geometry-enabled shape programming and transforming[J]. Physical Review Applied,2025,23(3):034070. [55] HAO X P,XU Z,LI C Y,et al. Kirigami-design-enabled hydrogel multimorphs with application as a multistate switch[J]. Advanced Materials,2020,32(22):2000781. [56] SHAO H Q,WEI S Z,JIANG X,et al. Bioinspired electrically activated soft bistable actuators[J]. Advanced Functional Materials,2018,28(35):1802999. [57] KIM Y,ZHAO X H. Magnetic soft materials and robots[J]. Chemical Reviews,2022,122(5):5317-5364. [58] RAMACHANDRAN V,BARTLETT M D,WISSMAN J,et al. Elastic instabilities of a ferroelastomer beam for soft reconfigurable electronics[J]. Extreme Mechanics Letters,2016,9:282-290. [59] SHAHSAVAN H,AGHAKHANI A,ZENG H,et al. Bioinspired underwater locomotion of light-driven liquid crystal gels[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(10):5125-5133. [60] LI S,DENG B,GRINTHAL A,et al. Liquid-induced topological transformations of cellular microstructures[J]. Nature,2021,592(7854):386-391. [61] CHOI W Y,KIM W,CHOI J R,et al. A hyperelastic torque-reversal mechanism for soft joints with compression-responsive transient bistability[J]. Science Robotics,2025,10(98):eado7696. [62] KEPLINGER C,LI T F,BAUMGARTNER R,et al. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation[J]. Soft Matter,2012,8(2):285-288. [63] LUO M,LIU L,LIU C,et al. A single-chamber pneumatic soft bending actuator with increased stroke-range by local electric guidance[J]. IEEE Transactions on Industrial Electronics,2021,68(9):8455-8463. [64] WANG Y X,LI Z,QIN L,et al. Dielectric elastomer fluid pump of high pressure and large volume via synergistic snap-through[J]. Journal of Applied Mechanics- Transactions of the ASME,2018,85(10):101003. [65] ZHANG J Y,OHSAKI M. Tensegrity structures:Form,stability,and symmetry[M]. Tokyo:Springer Japan,2015. [66] WANG Z J,LI K,HE Q G,et al. A light-powered ultralight tensegrity robot with high deformability and load capacity[J]. Advanced Materials,2019,31(7):1806849. [67] LITTLEFIELD Z,SUROVIK D,VESPIGNANI M,et al. Kinodynamic planning for spherical tensegrity locomotion with effective gait primitives[J]. International Journal of Robotics Research,2019,38(12-13):1442-1462. [68] BEGEY J,VEDRINES M,RENAUD P. Design of tensegrity-based manipulators:Comparison of two approaches to respect a remote center of motion constraint[J]. IEEE Robotics and Automation Letters,2020,5(2):1788-1795. [69] ZOLESI V S,GANGA P L,SCOLAMIERO L,et al. On an innovative deployment concept for large space structures[C]//42nd International Conference on Environmental Systems. San Diego:AIAA,2012:3601. [70] CHEN B X,JIANG H Z. Swimming performance of a tensegrity robotic fish[J]. Soft Robotics,2019,6(4):520-531. [71] CALLADINE C R. Buckminster fuller's “tensegrity” structures and clerk maxwell's rules for the construction of stiff frames[J]. International Journal of Solids and Structures,1978,14(2):161-172. [72] ZHANG J Y,GUEST S D,OHSAKI M,et al. Multi-stable star-shaped tensegrity structures[C]//Proceedings of the IABSE-IASS Symposium. London:IABSE-IASS,2011:P-0614. [73] MICHELETTI A. Bistable regimes in an elastic tensegrity system[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences,2013,469(2154):20130052. [74] MICHELETTI A,DOS SANTOS F A,GUEST S D. Prestrain-induced bistability in the design of tensegrity units for mechanical metamaterials[J]. Applied Physics Letters,2023,123(12):121702. [75] BöHM V,SUMI S,KAUFHOLD T,et al. Compliant multistable tensegrity structures[J]. Mechanism and Machine Theory,2017,115:130-148. [76] SUMI S,BÖHM V,ZIMMERMANN K. A multistable tensegrity structure with a gripper application[J]. Mechanism and Machine Theory,2017,114:204-217. [77] SCHORR P,ZENTNER L,ZIMMERMANN K,et al. Jumping locomotion system based on a multistable tensegrity structure[J]. Mechanical Systems and Signal Processing,2021,152:107384. [78] YANG H,ZHANG J,WANG J,et al. Delocalized deformation enhanced reusable energy absorption metamaterials based on bistable tensegrity[J]. Advanced Functional Materials,2024(1):2410217. [79] ZHANG J,YANG H,ZHAO Y W,et al. Adaptive,rapid,and stable trident robotic gripper:A bistable tensegrity structure implementation[J]. IEEE-ASME Transactions on Mechatronics,2025(1):1-11. [80] TODD B,PHILLIPS M,SCHULTZ S M,et al. Low-cost rfid threshold shock sensors[J]. IEEE Sensors Journal,2009,9(4):464-469. [81] ZHAO J,LIU P B,TANG Z A,et al. A wireless mems inertial switch for measuring both threshold triggering acceleration and response time[J]. IEEE Transactions on Instrumentation and Measurement,2014,63(12):3152-3161. [82] BAKER M S,POHL K R. High-g testing of mems mechanical non-volatile memory and silicon re-entry switch[R]. 2005. [83] ZHU Y,ZU J W. Enhanced buckled-beam piezoelectric energy harvesting using midpoint magnetic force[J]. Applied Physics Letters,2013,103(4):041905. [84] LIU W Q,BADEL A,FORMOSA F,et al. Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting[J]. Smart Materials and Structures,2013,22(3):035013. [85] KIM G W,KIM J. Compliant bistable mechanism for low frequency vibration energy harvester inspired by auditory hair bundle structures[J]. Smart Materials and Structures,2013,22(1):014005. [86] NGUYEN H-T,WANG D-A. Analysis of a tristable energy harvester[C]//The 22nd National Conference on Sound and Vibration. Changhua:Chinese Society of Sound and Vibration,2014. [87] WANG H Y,TANG L H. Modeling and experiment of bistable two-degree-of-freedom energy harvester with magnetic coupling[J]. Mechanical Systems and Signal Processing,2017,86:29-39. [88] VALENTINE J,ZHANG S,ZENTGRAF T,et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature,2008,455(7211):376-U332. [89] LEHMAN J,LAKES R S. Stiff,strong,zero thermal expansion lattices via material hierarchy[J]. Composite Structures,2014,107:654-663. [90] BABAEE S,SHIM J,WEAVER J C,et al. 3D soft metamaterials with negative Poisson's ratio[J]. Advanced Materials,2013,25(36):5044-5049. [91] SHAN S C,KANG S H,RANEY J R,et al. Multistable architected materials for trapping elastic strain energy[J]. Advanced Materials,2015,27(29):4296-4301. [92] CHE K K,YUAN C,WU J T,et al. Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence[J]. Journal of Applied Mechanics-Transactions of the ASME,2017,84(1):e011004. [93] RAFSANJANI A,AKBARZADEH A,PASINI D. Snapping mechanical metamaterials under tension[J]. Advanced Materials,2015,27(39):5931-5935. [94] HA C S,LAKES R S,PLESHA M E. Design,fabrication,and analysis of lattice exhibiting energy absorption via snap-through behavior[J]. Materials & Design,2018,141:426-437. [95] YIN Y Q,HU Y Z,ZHANG Y P,et al. Programmable multistable kirigami chain:Decoupling energy barrier and snapping force/displacement in a unified topology[J]. Mechanism and Machine Theory,2024,199:105691. [96] LIU Z L,FANG H B,XU J,et al. Discriminative transition sequences of origami metamaterials for mechanologic[J]. Advanced Intelligent Systems,2023,5(1):2200146. [97] SUN Y,SONG K,JU J,et al. Curved-creased origami mechanical metamaterials with programmable stabilities and stiffnesses[J]. International Journal of Mechanical Sciences,2024,262:108729. [98] ZHANG X,MA J Y,LI M Y,et al. Kirigami-based metastructures with programmable multistability[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(11):e2117649119. [99] HAGHPANAH B,SALARI-SHARIF L,POURRAJAB P,et al. Multistable shape-reconfigurable architected materials[J]. Advanced Materials,2016,28(36):7915-7920. [100] SHANG X,LIU L,RAFSANJANI A,et al. Durable bistable auxetics made of rigid solids[J]. Journal of Materials Research,2018,33(3):300-308. [101] CHI Y D,LI Y B,ZHAO Y,et al. Bistable and multistable actuators for soft robots:Structures,materials,and functionalities[J]. Advanced Materials,2022,34(19):2110384. [102] CHALVET V,HADDAB Y,LUTZ P. A microfabricated planar digital microrobot for precise positioning based on bistable modules[J]. IEEE Transactions on Robotics,2013,29(3):641-649. [103] MOHAND-OUSAID A,BOUHADDA I,BOURBON G,et al. Compact digital microrobot based on multistable modules[J]. IEEE Robotics and Automation Letters,2021,6(2):1926-1933. [104] CALMé B,RUBBERT L,HADDAB Y. Towards a discrete snake-like robot based on sma-actuated tristable modules for follow the leader control strategy[J]. IEEE Robotics and Automation Letters,2023,8(1):384-391. [105] HUSSEIN H,FARIBORZI H. Accurate sensorless multistable microsystem with a single actuator[J]. Frontiers in Mechanical Engineering-Switzerland,2022,8:825470. [106] GERSON Y,KRYLOV S,ILIC B,et al. Large displacement low voltage multistable micro actuator[C]//IEEE 21st International Conference on Micro Electro Mechanical Systems. Tucson:IEEE,2008:463-466. [107] ZHANG H,LERNER E,CHENG B,et al. Compliant bistable grippers enable passive perching for micro aerial vehicles[J]. IEEE/ASME Transactions on Mechatronics,2021,26(5):2316-2326. [108] TANG Y C,CHI Y D,SUN J F,et al. Leveraging elastic instabilities for amplified performance:Spine-inspired high-speed and high-force soft robots[J]. Science Advances,2020,6(19):eaaz6912. [109] CHEN T,BILAL O R,SHEA K,et al. Harnessing bistability for directional propulsion of soft,untethered robots[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(22):5698-5702. [110] LIN Y Q,ZHANG C,TANG W,et al. A bioinspired stress-response strategy for high-speed soft grippers[J]. Advanced Science,2021,8(21):2102539. [111] ZHANG Y C,QUAN J L,LI P C,et al. A flytrap-inspired bistable origami-based gripper for rapid active debris removal[J]. Advanced Intelligent Systems,2023,5(7):2200468. [112] CHI Y D,HONG Y Y,ZHAO Y,et al. Snapping for high-speed and high-efficient butterfly stroke-like soft swimmer[J]. Science Advances,2022,8(46): eadd3788. [113] YANG D Z,FENG M,SUN J N,et al. Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots[J]. Science Advances,2025,11(5):eads8734. [114] GORISSEN B,MELANCON D,VASIOS N,et al. Inflatable soft jumper inspired by shell snapping[J]. Science Robotics,2020,5(42):eabb1967. [115] HU N,LI B,BAI R Y,et al. A torsion-bending antagonistic bistable actuator enables untethered crawling and swimming of miniature robots[J]. Research,2023,6:0116. [116] YASUDA H,BUSKOHL P R,GILLMAN A,et al. Mechanical computing[J]. Nature,2021,598(7879):39-48. [117] SONG Y,PANAS R M,CHIZARI S,et al. Additively manufacturable micro-mechanical logic gates[J]. Nature Communications,2019,10(1):882. [118] LIU Z,FANG H,XU J,et al. Cellular automata inspired multistable origami metamaterials for mechanical learning[J]. Advanced Science,2023(1):2305146. [119] ZHANG H,WU J,FANG D N,et al. Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation[J]. Science Advances,2021,7(9):eabf1966. [120] MEI T,CHEN C Q. In-memory mechanical computing[J]. Nature Communications,2023,14(1):e5204. [121] ALQASIMI A,LUSK C. Shape-morphing space frame (smsf) using linear bistable elements[C]//Proceedings of the ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Boston:ASME,2015:V05AT08A023. [122] ZANATY M,FUSSINGER T,ROGG A,et al. Programmable multistable mechanisms for safe surgical puncturing[J]. Journal of Medical Devices-Transactions of the ASME,2019,13(2):021002. [123] FU H,NAN K,BAI W,et al. Morphable 3d mesostructures and microelectronic devices by multistable buckling mechanics[J]. Nature Materials,2018,17(3):268-276. [124] BOBBERT F S L,JANBAZ S,VAN MANEN T,et al. Russian doll deployable meta-implants:Fusion of kirigami,origami,and multi-stability[J]. Materials & Design,2020,191:108624. [125] BOBBERT F S L,JANBAZ S,ZADPOOR A A. Towards deployable meta-implants[J]. Journal of Materials Chemistry B,2018,6(21):3449-3455. |
| [1] | 刘天宇, 许硕, 王浩龙, 赵涵磊, 李铁军, 刘今越. 考虑柔性轮-地交互影响的移动作业机器人建模方法研究[J]. 机械工程学报, 2025, 61(9): 252-263. |
| [2] | 刘书豪, 裴香丽, 魏安民, 吴志伟, 戴振东. 基于运动反力的匍匐机器人地形自适应控制策略[J]. 机械工程学报, 2025, 61(9): 277-291. |
| [3] | 田威, 李鹏程, 缪云飞, 廖文和, 董松, 孟丹. 大型复材薄壁构件工业机器人高精度原位铣边加工新方法[J]. 机械工程学报, 2025, 61(7): 120-133. |
| [4] | 李睿智, 陈悦敏, 闫纪红. 面向轨迹动态感知与自主决策的工业机器人数字孪生建模方法研究[J]. 机械工程学报, 2025, 61(7): 269-283. |
| [5] | 俞滨, 何小龙, 王源, 佘进波, 巴凯先. 液压足式机器人关节底层力阻抗特性补偿控制[J]. 机械工程学报, 2025, 61(7): 294-300. |
| [6] | 汪朋朋, 卢浩, 杨志强, 侯福宁, 郭士杰, 甘中学. 协作SCARA机器人关节综合动态摩擦辨识与补偿[J]. 机械工程学报, 2025, 61(7): 325-337. |
| [7] | 武星, 李杨志, 臧铁钢, 孟昭旭, 陈俊哲, 王晨涛. 基于Voronoi骨架的移动机器人融合路径规划[J]. 机械工程学报, 2025, 61(5): 165-177. |
| [8] | 祁若龙, 王杰, 李论, 赵吉宾. 航空发动机叶片机器人磨削颤振半主动抑制研究[J]. 机械工程学报, 2025, 61(5): 228-238. |
| [9] | 刘阔, 崔益铭, 杨顼, 李明禹, 李凯, 王永青. 一种无监督的汽车装配车间桁架机器人健康状态监测方法[J]. 机械工程学报, 2025, 61(4): 44-54. |
| [10] | 张军辉, 倪小昊, 纵怀志, 郭怡涛, 杨梅生, 朱琦歆, 徐兵. 机器人用电静液作动器研究现状与发展趋势[J]. 机械工程学报, 2025, 61(4): 273-289. |
| [11] | 罗自荣, 洪阳, 蒋涛, 林泽宁, 杨云, 朱群为. 微型仿生机器人研究现状综述[J]. 机械工程学报, 2025, 61(3): 178-196. |
| [12] | 罗学劲, 张润世, 邓颖言, 莫昊, 竺佳宇, 刘昕宇, 贺洋, 王君臣. 双臂协同颅颌面截骨手术机器人[J]. 机械工程学报, 2025, 61(3): 212-224. |
| [13] | 秦岩丁, 范迦得, 张浩琦, 田孟强, 韩建达. 气动人工肌肉驱动的上肢康复外骨骼机器人设计与控制[J]. 机械工程学报, 2025, 61(3): 225-236. |
| [14] | 陈彦霖, 邓小恒, 张宪民, 黄沿江. 绳驱机器人动力学建模与控制研究综述[J]. 机械工程学报, 2025, 61(19): 1-17. |
| [15] | 梁栋, 崔满军, 宋轶民, 石浩昊, 张珺鹏. 新型多驱动模式并联机器人创新设计与建模分析[J]. 机械工程学报, 2025, 61(19): 63-77. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
