机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 252-263.doi: 10.3901/JME.2025.09.252
• 机器人及机构学 • 上一篇
刘天宇1, 许硕1, 王浩龙1, 赵涵磊1, 李铁军2, 刘今越1
收稿日期:
2024-05-11
修回日期:
2024-10-14
发布日期:
2025-06-12
通讯作者:
刘今越,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为建筑机器人、机器人环境感知、智能检测与控制。E-mail:ljy@hebut.edu.cn
E-mail:ljy@hebut.edu.cn
作者简介:
刘天宇,男,1996年出生,博士研究生。主要研究方向为机器人建模与精度补偿。E-mail:Hebut_liutianyu@163.com
基金资助:
LIU Tianyu1, XU Shuo1, WANG Haolong1, ZHAO Hanlei1, LI Tiejun2, LIU Jinyue1
Received:
2024-05-11
Revised:
2024-10-14
Published:
2025-06-12
摘要: 移动作业机器人作为完成大空间复杂任务的有效技术途径,其作业精度通常受到底盘导航、轮胎变形、操作臂定位等因素的影响。针对机器人作业过程中轮胎变形造成的末端精度降低问题,提出一种考虑柔性轮-地交互影响的机器人建模方法。首先,引入轮胎印迹坐标系建立轮式底盘静态模型,同时构建了完整的机器人运动学框架。然后,考虑充气轮胎造成的机器人浮动问题,建立柔性轮-地交互模型,推导轮胎的受力变形公式。最后,根据车轮位移变化,计算机器人车-臂耦合下的底盘实时位姿,进而求解浮动机器人末端的真实位姿。实验结果证明,提出的建模方法能够准确计算出轮胎变形后机器人的末端位置,带载运行时的末端定位误差降低了至少64.9%,机器人末端的绝对定位精度得到了大幅度提高。
中图分类号:
刘天宇, 许硕, 王浩龙, 赵涵磊, 李铁军, 刘今越. 考虑柔性轮-地交互影响的移动作业机器人建模方法研究[J]. 机械工程学报, 2025, 61(9): 252-263.
LIU Tianyu, XU Shuo, WANG Haolong, ZHAO Hanlei, LI Tiejun, LIU Jinyue. Modeling Method of Mobile Manipulators Considering Flexible Tire-ground Interactions[J]. Journal of Mechanical Engineering, 2025, 61(9): 252-263.
[1] 罗欣,丁晓军. 地面移动作业机器人运动规划与控制研究综述[J]. 哈尔滨工业大学学报,2021,53(1):1-15. LUO Xin,DING Xiaojun. Research and prospective of motion planning and control of ground mobile manipulators[J]. Journal of Harbin Institute of Technology,2021,53(1):1-15. [2] ZHANG Jianqi,YANG Xu,WANG Wei,et al. Automated guided vehicles and autonomous mobile robots for recognition and tracking in civil engineering[J]. Automation in Construction,2023,146:104699. [3] RUBIO F,VALERO F,LLOPIS-ALBERT C. A review of mobile robots:Concepts,methods,theoretical framework,and applications[J]. International Journal of Advanced Robotic Systems,2019,16(2):1-22. [4] JU C,KIM J,SEOL J,et al. A review on multirobot systems in agriculture[J]. Computers and Electronics in Agriculture,2022,202:107336. [5] BAI Quan,LI Pengcheng,TIAN Wei,et al. Coordinated motion planning of the mobile redundant manipulator for processing large complex components[J]. The International Journal of Advanced Manufacturing Technology,2022,121(9-10):6703-6721. [6] 何雨镐,谢福贵,刘辛军,等. 大型构件机器人原位加工中的测量方案概述[J]. 机械工程学报,2022,58(14):1-14. HE Yuhao,XIE Fugui,LIU Xinjun,et al. Review on measurement schemes for robotic machining of large components in-situ[J]. Journal of Mechanical Engineering,2022,58(14):1-14. [7] MEI Bin,XIE Fugui,LIU Xinjun,et al. A mobile hybrid robot and its accuracy issue in machining of large-scale structures[J]. IEEE/ASME Transactions on Mechatronics,2023,1-11. [8] ZHANG Shijun,CHENG Shuhong,JIN Zhenlin. Visual measurement method and application of mobile manipulator pose estimation based on ppmcc-imm filtering[J]. IEEE Transactions on Instrumentation and Measurement,2023,72:1-12. [9] ZHAO Xingwei,TAO Bo,HAN Shibo,et al. Accuracy analysis in mobile robot machining of large-scale workpiece[J]. Robotics and Computer-Integrated Manufacturing,2021,71:102153. [10] 杨继之,乐毅,张加波,等. 移动机器人定位精度实时补偿策略研究[J]. 机械工程学报,2022,58(14):44-53. YANG Jizhi,YUE Yi,ZHANG Jiabo,et al. Real-time compensation strategy of mobile robot positioning accuracy[J]. Journal of Mechanical Engineering,2022,58(14):44-53. [11] YAMAZAKI K,SUZUKI S,KURIBAYASHI Y. Approaching motion planning for mobile manipulators considering the uncertainty of self-positioning and object's pose estimation[J]. Robotics and Autonomous Systems,2022,158:104232. [12] YI Jingang,WANG Hongpeng,ZHANG Junjie,et al. Kinematic modeling and analysis of skid-steered mobile robots with applications to low-cost inertial-measurement- unit-based motion estimation[J]. IEEE Transactions on Robotics,2009,25(5):1087-1097. [13] SAVAEE E,RAHMANI H A,ANABESTANI Y. Kinematic analysis and odometry-based navigation of an omnidirectional wheeled mobile robot on uneven surfaces[J]. Journal of Intelligent & Robotic Systems,2023,108:13. [14] XING Hongjun,TORABI A,DING Liang,et al. Enhancing kinematic accuracy of redundant wheeled mobile manipulators via adaptive motion planning[J]. Mechatronics,2021,79:102639. [15] 石章虎,何晓煦,曾德标,等. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报,2020,41(11):428-439. SHI Zhanghu,HE Xiaoxu,ZENG Debiao,et al. Error compensation method for mobile robot positioning based on error similarity[J]. Acta Aeronautica et Astronautica Sinica,2020,41(11):428-439. [16] GAI Yuhang,ZHANG Jiwen,HU Kui,et al. Kinematic accuracy analysis and improvement of mobile manipulator[C]//2019 IEEE 9th Annual International Conference on CYBER Technology in Automation,Control,and Intelligent Systems,Suzhou,China,IEEE,2019:1251-1256. [17] ŽLAJPAH L,PETRIČ T. Kinematic calibration for collaborative robots on a mobile platform using motion capture system[J]. Robotics and Computer-Integrated Manufacturing,2023,79:102446. [18] ZHONG Guoliang,KOBAYASHI Y,HOSHINO Y,et al. System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty[J]. Nonlinear Dynamics,2013,73:167-182. [19] AGUILERA-MARINOVIC S,TORRES-TORRITI M,AUAT-CHEEIN F. General dynamic model for skid-steer mobile manipulators with wheel-ground interactions[J]. IEEE/ASME Transactions on Mechatronics,2017,22(1):433-444. [20] FENG Yixiao,TIAN Xiangyu,LI Tiemin,et al. Measurement of mobile manipulator chassis pose change caused by suspension deformation and end-effector accuracy improvement based on multi-sensor fusion[J]. Robotics and Autonomous Systems,2023,170:104553. [21] KELLY A. Mobile robotics:Mathematics,models,and methods[M]. Cambridge University Press,2013. [22] 郭孔辉. UniTire统一轮胎模型[J]. 机械工程学报,2016,52(12):90-99. GUO Konghui. UniTire:Unified tire model[J]. Journal of Mechanical Engineering,2016,52(12):90-99. [23] DENAVIT J,HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices[J]. ASME Journal of Applied Mechanics,1955,22(2):215-221. [24] KHALIL W,KLEINFINGER J. A new geometric notation for open and closed-loop robots[C]//Proceedings 1986 IEEE International Conference on Robotics and Automation. San Francisco,CA,USA,IEEE,1986:1174-1179. [25] TAB Bo,ZHAO Xingwei,YAN Sijie,et al. Kinematic modeling and control of mobile robot for large-scale workpiece machining[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2022,236(1-2):29-38. [26] 郭孔辉. 汽车轮胎动力学[M]. 北京:科学出版社,2018. GUO Konghui. Automotive tire dynamics[M]. Beijing:Science Press,2018. [27] 庄继得. 汽车轮胎学[M].北京:北京理工大学出版社,1995. ZHUANG Jide. Automotive tire science[M]. Beijing:Beijing Institute of Technology Press,1995. [28] LI Zhijun,GE S S. Fundamentals in modeling and control of mobile manipulators[M]. Boca Raton,FL,USA:CRC Press,2013. |
[1] | 王高见, 叶延洪, 康丹丹, 邓德安. 焊接热输入对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2025, 61(8): 148-158. |
[2] | 周海仑, 仓阳光, 张钰奇, 曹刚毅. 带O型圈的闭式挤压油膜阻尼器动力特性分析[J]. 机械工程学报, 2025, 61(8): 352-361. |
[3] | 葛佳, 傅国宇, 邹云鹤, 罗明. 碳纤维增经强树脂基复合材料特种加工综述[J]. 机械工程学报, 2025, 61(7): 77-97. |
[4] | 徐捷, 冯平法, 乐祺中, 尚凯锋, 王昱天, 冯峰. 单向CFRP复合材料高速直角切削实验研究[J]. 机械工程学报, 2025, 61(7): 109-119. |
[5] | 傅国宇, 李皓, 武卫洲, 李士鹏, 赵庆, 秦旭达. 碳纤维增强复合材料钻削过程跨尺度三维数值建模及损伤形成机理研究[J]. 机械工程学报, 2025, 61(7): 144-155. |
[6] | 梁思羽, 刘广军, 陈涛, 赫连勃勃, 王云飞. 基于极坐标映射的CFRP制孔毛刺形态学特征与评价指标[J]. 机械工程学报, 2025, 61(7): 167-180. |
[7] | 周云光, 陈晗, 邹忌, 马文敏, 马廉洁, 李明, 尹国强, 巩亚东. 2.5D-Cf/SiC复合材料超声椭圆振动辅助螺旋磨削运动学模型及材料去除机理研究[J]. 机械工程学报, 2025, 61(7): 229-244. |
[8] | 王海艳, 于万春, 冯岩, 王庆超. 基于能量法的CFRP倾斜螺旋铣孔轴向力建模[J]. 机械工程学报, 2025, 61(7): 245-258. |
[9] | 石文天, 杨益琳, 李杰, 李建, 解钏, 马通. 基于微量润滑的芳纶复合材料铣磨复合加工对比试验研究[J]. 机械工程学报, 2025, 61(7): 259-268. |
[10] | 韩长坤, 卢威, 宋浏阳, 王华庆. 特征原子稀疏解析的多状态机械故障诊断方法[J]. 机械工程学报, 2025, 61(6): 33-42. |
[11] | 韩静, 石玗, 李广, 张航, 陆刚. 非均匀激光热源焊接铜/钢接头的组织及力学性能研究[J]. 机械工程学报, 2025, 61(6): 151-159. |
[12] | 宋和川, 周晓敏, 张清东, 熊青霞, 张勃洋. 磁处理对铁磁材料残余应力调控规律及机理研究[J]. 机械工程学报, 2025, 61(6): 174-183. |
[13] | 祁若龙, 王杰, 李论, 赵吉宾. 航空发动机叶片机器人磨削颤振半主动抑制研究[J]. 机械工程学报, 2025, 61(5): 228-238. |
[14] | 张周卫, 代德山, 汪雅红, 牛旭转. 低温缠绕管内流体螺旋绕流压降特性研究[J]. 机械工程学报, 2025, 61(5): 297-307. |
[15] | 秦飞红, 袁懋诞, 祝端阳, 刘晓睿, 李明, 纪轩荣. 基于多层特征融合目标检测网络的超声全聚焦钢板焊缝缺陷自动检测研究[J]. 机械工程学报, 2025, 61(4): 55-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||