• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (9): 252-263.doi: 10.3901/JME.2025.09.252

• 机器人及机构学 • 上一篇    

扫码分享

考虑柔性轮-地交互影响的移动作业机器人建模方法研究

刘天宇1, 许硕1, 王浩龙1, 赵涵磊1, 李铁军2, 刘今越1   

  1. 1. 河北工业大学机械工程学院 天津 300401;
    2. 河北科技大学机械工程学院 石家庄 050018
  • 收稿日期:2024-05-11 修回日期:2024-10-14 发布日期:2025-06-12
  • 通讯作者: 刘今越,男,1977年出生,博士,教授,博士研究生导师。主要研究方向为建筑机器人、机器人环境感知、智能检测与控制。E-mail:ljy@hebut.edu.cn E-mail:ljy@hebut.edu.cn
  • 作者简介:刘天宇,男,1996年出生,博士研究生。主要研究方向为机器人建模与精度补偿。E-mail:Hebut_liutianyu@163.com
  • 基金资助:
    国家自然科学基金(U20A20283)和河北省重点研发计划(22311801D)资助项目。

Modeling Method of Mobile Manipulators Considering Flexible Tire-ground Interactions

LIU Tianyu1, XU Shuo1, WANG Haolong1, ZHAO Hanlei1, LI Tiejun2, LIU Jinyue1   

  1. 1. School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401;
    2. School of Mechanical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018
  • Received:2024-05-11 Revised:2024-10-14 Published:2025-06-12

摘要: 移动作业机器人作为完成大空间复杂任务的有效技术途径,其作业精度通常受到底盘导航、轮胎变形、操作臂定位等因素的影响。针对机器人作业过程中轮胎变形造成的末端精度降低问题,提出一种考虑柔性轮-地交互影响的机器人建模方法。首先,引入轮胎印迹坐标系建立轮式底盘静态模型,同时构建了完整的机器人运动学框架。然后,考虑充气轮胎造成的机器人浮动问题,建立柔性轮-地交互模型,推导轮胎的受力变形公式。最后,根据车轮位移变化,计算机器人车-臂耦合下的底盘实时位姿,进而求解浮动机器人末端的真实位姿。实验结果证明,提出的建模方法能够准确计算出轮胎变形后机器人的末端位置,带载运行时的末端定位误差降低了至少64.9%,机器人末端的绝对定位精度得到了大幅度提高。

关键词: 移动作业机器人, 数学物理建模, 柔性轮-地交互, 车-臂耦合效应, 绝对定位精度

Abstract: As an effective technical way to perform complex tasks in large spaces, the operating accuracy of mobile manipulators is usually affected by chassis navigation, tire deformation, manipulator positioning, and other factors. To reduce the end-effector positioning error caused by tire deformation during robot operations, a modeling method that considers the influence of flexible tire-ground interaction is proposed. Firstly, a static model of the wheeled chassis is established by introducing the tire coordinate system, and a complete robot kinematics framework is constructed. Secondly, considering the floating robot problem caused by the pneumatic tire, the tire-ground interaction model is established, and the tire deformation equation is derived. Finally, based on the displacement change of the wheels, the real-time chassis posture is calculated under the chassis-manipulator coupling, and then the actual end-effector posture of the floating robot is obtained. The experimental results demonstrated that the proposed modeling method could accurately calculate the robot end-effector position after tire deformation, and the positioning error during load operation was reduced by at least 64.9%. The absolute positioning accuracy of the robot end-effector is significantly improved.

Key words: mobile manipulators, mathematical-physical modeling, flexible tire-ground interaction, chassis-manipulator coupling effect, absolute positioning accuracy

中图分类号: