• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (19): 327-340.doi: 10.3901/JME.2025.19.327

• 制造工艺和装备 • 上一篇    

扫码分享

钼镧合金超声椭圆振动金刚石切削机制研究

刘良1,2, 王茂1,2, 马善意1,2, 付宇帆1,2, 张建国1,2, 肖峻峰1,2, 陈肖3,4, 许剑锋1,2   

  1. 1. 华中科技大学机械科学与工程学院 武汉 430074;
    2. 华中科技大学智能制造装备与技术全国重点实验室 武汉 430074;
    3. 湖北工业大学机械工程学院 武汉 430068;
    4. 国家数字化设计与制造创新中心 武汉 430206
  • 收稿日期:2024-10-18 修回日期:2025-07-26 发布日期:2025-11-24
  • 作者简介:刘良,男,2000年出生。主要研究方向为难加工材料超精密切削去除机理及其工艺。E-mail:m202270867@hust.edu.cn
    张建国(通信作者),男,1985年出生,博士,教授,博士研究生导师。主要研究方向为难加工材料的超精密加工、原位激光辅助及振动辅助超精密金刚石切削技术。E-mail:zhangjg@hust.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFC2202300)、国家自然科学基金(52375430,52225506)和华中科技大学学术前沿青年团队(2019QYTD12)资助项目。

Investigation of the Mechanism in Ultrasonic Elliptical Vibration Diamond Cutting of Mo-La Alloy

LIU Liang1,2, WANG Mao1,2, MA Shanyi1,2, FU Yufan1,2, ZHANG Jianguo1,2, XIAO Junfeng1,2, CHEN Xiao3,4, XU Jianfeng1,2   

  1. 1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074;
    2. State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074;
    3. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068;
    4. National Innovation Institute of Digital Design and Manufacturing, Wuhan 430206
  • Received:2024-10-18 Revised:2025-07-26 Published:2025-11-24

摘要: 钼镧合金是一种典型的难加工材料,在普通切削过程中极易引发材料脆性断裂和刀具磨损,难以获得高质量加工表面。超声椭圆振动切削技术是一种实现难加工材料超精密切削加工的有效方法。开展了钼镧合金金刚石切削实验研究,验证了超声椭圆振动切削对材料可加工性的提升作用,对比分析了普通切削和超声椭圆振动切削钼镧合金表面创成机制、切屑形成机制及刀具损伤机制。通过改变刀具椭圆振动轨迹,当椭圆轨迹取向角为160°时,实现了1 0351.9 nm的最大临界切削深度,相对于普通切削的最优临界切削深度52.5 nm,提升了197倍。普通金刚石切削过程,材料主要以脆性模式被去除。成形表面产生鳞刺缺陷,切屑剪切带的锯齿特征明显,且切屑与刀具接触面粗糙、产生明显撕裂,与此同时材料与刀具粘结严重。超声椭圆振动金刚石切削过程,材料主要以塑性模式被去除。成形表面鳞刺缺陷的产生被显著抑制,切屑剪切带的锯齿特征减弱,且切屑与刀具接触面光滑、无撕裂现象产生,材料与刀具的粘结得到有效抑制。分析表明,超声椭圆振动切削显著提升了钼镧合金可加工性、抑制了表面脆性缺陷和刀具损伤。本研究揭示了钼镧合金的材料去除机制,有助于推动钼镧合金在航空航天等领域中的应用。

关键词: 钼镧合金, 难加工材料, 超声椭圆振动切削, 脆塑转变, 材料去除机制

Abstract: Mo-La alloy is a typical difficult-to-cut material, which is very prone to cause brittle fracture and tool wear in the conventional cutting process, making it difficult to obtain high-quality machined surfaces. Ultrasonic elliptical vibration cutting technology is an effective method for achieving ultra-precision cutting of difficult-to-cut materials. This research conducts diamond cutting experiments on Mo-La alloy to verify the enhancement effect of elliptical vibration cutting on material machinability and comparatively analyzes the surface generation mechanism, chip formation mechanism, and tool damage mechanism of Mo-La alloy in conventional cutting and ultrasonic elliptical vibration cutting. By changing the elliptical vibration trajectory of the tool, a maximum critical depth of cut of 10351.9 nm is achieved at an orientation angle of elliptical trajectory of 160°, which is 197 times higher than that of 52.5 nm in conventional cutting. In the conventional diamond cutting process, the material is removed mainly in a brittle mode. The scaly burr defects are generated on the forming surface. The serration feature of the chip shear band is obvious and the contact surface between the chip and the tool is rough with obvious tearing. At the same time, the material is severely adhered to the tool. In the ultrasonic elliptical vibration diamond cutting process, the material is removed mainly in the brittle mode. The generation of scaly burr defects on the forming surface is significantly suppressed. The serration feature of the chip shear band is weakened and the contact surface between the chip and the tool is smooth with no tearing phenomenon. The material adhesion on the tool is effectively suppressed. It is dictated that ultrasonic elliptical vibration cutting significantly enhances the machinability of Mo-La alloy, and inhibits surface brittle defects and tool damage. This research reveals the material removal mechanism of Mo-La alloy, which can help to promote the application of Mo-La alloy in aerospace and other fields.

Key words: Mo-La alloy, difficult-to-cut material, ultrasonic elliptical vibration cutting, ductile-to-brittle transition, material removal mechanism

中图分类号: