• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (18): 161-169,180.doi: 10.3901/JME.2025.18.161

• 材料科学与工程 • 上一篇    

扫码分享

轧制过程中非金属夹杂物变形的三维有限元模拟

王佳力1, 李实2,3, 何弘博2, 王亚栋4, 张立峰4   

  1. 1. 燕山大学材料科学与工程学院 秦皇岛 066044;
    2. 燕山大学机械工程学院 秦皇岛 066044;
    3. 宝钢股份中央研究院不锈钢研发中心 上海 201999;
    4. 北方工业大学机械与材料工程学院 北京 100144
  • 收稿日期:2024-11-15 修回日期:2025-04-05 发布日期:2025-11-08
  • 作者简介:王佳力,男,1983年出生,博士研究生。主要研究方向为炼钢与连铸。E-mail:wangjiali@sgqg.com;王亚栋,男,1992年出生,博士,副教授。主要研究方向为钢的凝固与连铸。E-mail:wangyadong@ncut.edu.cn;张立峰(通信作者),男,1972年出生,博士,教授,博士研究生导师。主要研究方向为洁净钢与非金属夹杂物,冶金过程数值模拟仿真。E-mail:zhanglifeng@ncut.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFB3709900)和国家自然科学基金(U22A20171、52204333)和北京市自然科学基金(2242034)资助项目

Three-dimensional Finite Element Simulation of Deformation of Non-metallic Inclusions during Rolling Process

WANG Jiali1, LI Shi2,3, HE Hongbo2, WANG Yadong4, ZHANG Lifeng4   

  1. 1. School of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004;
    2. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004;
    3. Stainless Steel R&D Center, Central R and D Institute, Baoshan Iron and Steel Co., Ltd., Shanghai 201999;
    4. School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144
  • Received:2024-11-15 Revised:2025-04-05 Published:2025-11-08

摘要: 利用Abaqus有限元软件建立了钢中非金属夹杂物轧制变形的三维有限元模型,模拟了夹杂物种类、轧板中夹杂物所在位置和夹杂物方向对轧板中夹杂物变形及应力的影响。以长径比来表征钢中夹杂物的变形能力,四种夹杂物的变形能力从高到低分别为:MnS>Al2O3-MnS>Al2O3>TiN。Al2O3-MnS复合夹杂物中Al2O3外侧较软MnS相的存在,使得夹杂物周围钢基体中的等效塑性应变值更小,减小了钢基体失效的概率,因此可以在冶炼中对夹杂物改性处理,实现在硬质夹杂物外覆盖一层软质夹杂物,降低夹杂物对钢性能的危害。当夹杂物在轧板中心位置时,Al2O3-MnS复合夹杂物中的MnS相的残余应力平均值最小,为121.373 MPa。当夹杂物在轧板厚度1/4处时,夹杂物变形最明显,MnS相的残余应力平均值最大,为126.853 MPa。轧制变形前椭球体MnS夹杂物长轴与轧制方向夹角越大,轧制过程中发生旋转的角度也越大,轧制变形后的长径比从4.15逐渐降低至1.12。通过轧制过程中非金属夹杂物变形的三维有限元模拟,为炼钢过程中夹杂物的成分和尺寸控制以及制定轧制参数提供理论依据。

关键词: 夹杂物, 轧制, 有限元模拟, Abaqus, 应力

Abstract: A three-dimensional finite element model of the rolling deformation of non-metallic inclusions in steel is established using Abaqus finite element software. The effect of inclusion type, the location of inclusions within the rolled plate, and the orientation of inclusions on the deformation and stress of the inclusions in the rolled plate is investigated. The deformation capability of inclusions in steel is characterized by the aspect ratio. The deformation capabilities of the four types of inclusions, from highest to lowest, are as follows: MnS>Al2O3-MnS>Al2O3>TiN. In Al2O3-MnS composite inclusions, the presence of the softer MnS phase on the outside of the Al2O3 reduced the equivalent plastic strain values in the steel matrix surrounding the inclusion decreasing the probability of failure in the steel matrix. Therefore, during the smelting process, inclusions can be modified by coating a layer of soft inclusions around hard inclusions to reduce the harmful impact of inclusions on the performance of the steel. When the inclusion is located at the center of the rolled plate, the residual stress in the MnS phase of the Al2O3-MnS composite inclusion reached its minimum average value of 121.373 MPa. When the inclusion is located at 1/4 of the thickness of the rolled plate, the inclusions underwent the most significant deformation, and the average residual stress in the MnS phase reached its maximum value of 126.853 MPa. Before rolling deformation, the larger the angle between the major axis of the ellipsoidal MnS inclusions and the rolling direction, the greater the rotation angle during the rolling process. After the rolling deformation, the length-to-diameter ratio gradually decreased from 4.15 to 1.12. The three-dimensional finite element simulation of the deformation of non-metallic inclusions during the rolling process provides a theoretical basis for controlling the composition and size of inclusions in steelmaking, as well as for determining rolling parameters.

Key words: inclusions, rolling, finite element simulation, Abaqus, stress

中图分类号: