机械工程学报 ›› 2025, Vol. 61 ›› Issue (17): 314-330.doi: 10.3901/JME.2025.17.314
• 制造工艺与装备 • 上一篇
赵万芹1,2, 张涛1,2, 孙涛1,2, 梅雪松1,2, 凡正杰1,2, 崔健磊1,2, 段文强1,2, 王文君1,2
收稿日期:2024-09-25
修回日期:2025-01-13
发布日期:2025-10-24
作者简介:赵万芹,女,1983年出生,博士,副研究员,硕士研究生导师。主要研究方向为激光光束调控精密加工及其监测技术等。E-mail:linazhao@xjtu.edu.cn;王文君(通信作者),女,1981年出生,博士,教授,博士研究生导师。主要研究方向为高能束微细加工理论与应用、微细加工理论与应用等。E-mail:wenjunwang@mail.xjtu.edu.cn
基金资助:ZHAO Wanqin1,2, ZHANG Tao1,2, SUN Tao1,2, MEI Xuesong1,2, FAN Zhengjie1,2, CUI Jianlei1,2, DUAN Wenqiang1,2, WANG Wenjun1,2
Received:2024-09-25
Revised:2025-01-13
Published:2025-10-24
摘要: 航空发动机的大推重比发展趋势刺激了涡轮叶片气膜冷却孔的高质量加工需求,而超快激光一方面由于其近似“冷加工”的性质在无重铸层、低孔壁粗糙度等微孔加工领域表现优异,另一方面兼具无材料选择性、非接触式、柔性加工等特点在微纳加工领域应用广泛,因此,气膜冷却孔的超快激光加工逐渐成为研究热点。然而涡轮叶片作为典型的薄壁腔体类零件,激光穿透叶片照射到空腔内壁引发的烧蚀损伤问题始终难以解决,后壁防护技术随之越来越受重视。立足于气膜冷却孔的超快激光加工,首先归纳总结了超快激光微孔加工的烧蚀机理及仿真案例,点明仿真分析和实验对照已经构成了激光加工的普遍研究方案;随后从激光参数、扫描方式、加工步骤等三个方面对比分析了超快激光气膜冷却孔加工的工艺路线及具体加工效果;在此基础上进一步总结了材料填充、工艺调控等后壁防护关键技术对高质量气膜冷却孔加工的重要作用,明确了填充材料的填充、取出、防护等性能需求,确定了工艺调控的可行策略及辅助作用,最后指出了超快激光制孔工艺研究的关键目标以及后壁防护技术的系统性、协同性发展趋势,为气膜冷却孔的实际加工奠定基础。
中图分类号:
赵万芹, 张涛, 孙涛, 梅雪松, 凡正杰, 崔健磊, 段文强, 王文君. 涡轮叶片气膜冷却孔超快激光加工及后壁防护综述[J]. 机械工程学报, 2025, 61(17): 314-330.
ZHAO Wanqin, ZHANG Tao, SUN Tao, MEI Xuesong, FAN Zhengjie, CUI Jianlei, DUAN Wenqiang, WANG Wenjun. Overview of Ultrafast Laser Processing and Back Wall Protection for Turbine Blade Film Cooling Holes[J]. Journal of Mechanical Engineering, 2025, 61(17): 314-330.
| [1] 高玉龙. 航空发动机发展简述及趋势探索[J]. 现代制造技术与装备,2018(7): 222,224. GAO Yulong. Overview and trend exploration of aircraft engine development[J]. Modern Manufacturing Technology and Equipment,2018(7): 222,224. [2] 查理. 航空发动机技术[J]. 国防科技,2004(4): 16-20. CHARLIE. Aircraft engine technology[J]. Defense Technology,2004 (4): 16-20. [3] 夏凯龙,葛超,王秋童,等. 涡轮叶片冷却气膜孔及涂层缺陷检测技术研究进展[J]. 航空制造技术,2022,65(13): 92-104. XIA Kailong,GE Chao,WANG Qiutong,et al. Research progress on defect detection technology for cooling film holes and coatings on turbine blades[J]. Aviation Manufacturing Technology,2022,65 (13): 92-104. [4] PEI H,YAO X,ZHANG Y,et al. The plastic strengthening effect after long-term endurance and fatigue verification of aero-engine turbine blade single crystal superalloy[J]. Mechanics of Time-Dependent Materials,2022,26(4): 815-827. [5] ALNAELI M,ALNAJIDEEN M,NAVARATNE R,et al. High-temperature materials for complex components in Ammonia/Hydrogen gas turbines: A critical review[J]. Energies,2023,16(19): 6973. [6] 赵云松,张迈,戴建伟,等. 航空发动机涡轮叶片热障涂层研究进展[J]. 材料导报,2023,37(6): 77-83. ZHAO Yunsong,ZHANG Mai,DAI Jianwei,et al. Research progress on thermal barrier coatings for aircraft engine turbine blades[J]. Materials Review,2023,37 (6): 77-83. [7] BARWINSKA I,KOPEC M,KUKLA D,et al. Thermal barrier coatings for high-temperature performance of nickel-based superalloys: A synthetic review[J]. Coatings,2023,13(4): 769. [8] KIM S,LEE D E,KANG Y S,et al. Experimental study on the improvement of film cooling effectiveness of various modified configurations based on a fan-shaped film cooling hole on an endwall[J]. Energies,2023,16(23): 7733. [9] 孔祥灿,张子卿,朱俊强,等. 航空发动机气冷涡轮叶片冷却结构研究进展[J]. 推进技术,2022,43(5): 6-28. KONG Xiangcan,ZHANG Ziqing,ZHU Junqiang,et al. Research progress on cooling structures of air-cooled turbine blades in aircraft engines[J]. Propulsion Technology,2022,43(5): 6-28. [10] DUTTA S,KAUR I,SINGH P. Review of film cooling in gas turbines with an emphasis on additive manufacturing-based design evolutions[J]. Energies,2022,15(19): 6968. [11] 李世峰,黄康,马护生,等. 航空发动机涡轮叶片气膜冷却孔设计与制备技术研究进展[J]. 热能动力工程,2022,37(09): 1-11. LI Shifeng,HUANG Kang,MA Husheng,et al. Research progress on design and preparation technology of film cooling holes for aviation engine turbine blades[J]. Thermal Power Engineering,2022,37 (09): 1-11. [12] 张文武,郭春海,张天润,等. 涡轮叶片先进气膜冷却与相关激光打孔技术进展[J]. 航空制造技术,2016,(22): 26-31. ZHANG Wenwu,GUO Chunhai,ZHANG Tianrun,et al. Progress in advanced film cooling and related laser drilling technology for turbine blades[J]. Aviation Manufacturing Technology,2016,(22): 26-31. [13] 郭文,王鹏飞. 涡轮叶片冷却技术分析[J]. 航空动力,2020(6): 55-58. GUO Wen,WANG Pengfei. Analysis of turbine blade cooling technology[J]. Aviation Power,2020(6): 55-58. [14] WANG W,YAN Y,ZHOU Y,et al. Review of advanced effusive cooling for gas turbine blades[J]. Energies,2022,15(22): 8568. [15] 胡勇,孟庆鑫,王梁,等. 基于稳态磁场阻尼效应的激光熔覆气孔缺陷抑制机制[J].中国表面工程,2024,37(3): 14-24. HU Yong,MENG Qingxin,WANG Liang,et al. Inhibition mechanism of laser-cladding porosity defects based on steady-state magnetic-field damping effect[J]. China Surface Engineering,2024,37(3): 14-24. [16] 杨泽南,查海勇,黄子婴,等. 涡轮叶片气膜孔制造及检测技术发展与展望[J]. 失效分析与预防,2023,18(1): 14-20. YANG Zenan,CHA Haiyong,HUANG Ziying,et al. Development and prospects of manufacturing and testing technology for turbine blade film holes[J]. Failure Analysis and Prevention,2023,18(1): 14-20. [17] KLIUEV M,WEGENER K. Method of machining diffusors in Inconel 718 turbine blades for film cooling using EDM drilling and shaping[J]. Procedia CIRP,2020,95: 511-515. [18] YANG Z,LIU L,WANG J,et al. Revealing the formation of recast layer around the film cooling hole in superalloys fabricated using electrical discharge machining[J]. Metals,2023,13(4): 695. [19] 刘露,杨泽南,李俊杰,等. 电火花加工气膜冷却孔重熔层的研究进展[J]. 铸造技术,2022,43(10): 856-862. LIU Lu,YANG Zenan,LI Junjie,et al. Research progress on remelting layer of gas film cooling holes in electrical discharge machining[J]. Casting Technology,2022,43 (10): 856-862. [20] 胡春燕,刘新灵,陶春虎,等. 电液束加工对DD6单晶高温合金气膜孔的损伤行为研究[J]. 稀有金属材料与工程,2019,48(10): 3190-3194. HU Chunyan,LIU Xinling,TAO Chunhu,et al. Study on the damage behavior of gas film holes in dd6 single crystal high temperature alloy by electrohydraulic beam processing[J]. Rare Metal Materials and Engineering,2019,48 (10): 3190-3194. [21] 张志金,张明岐,潘志福. 制孔工艺对DD6镍基单晶高温合金低周疲劳性能的影响[J]. 电加工与模具,2024(1): 31-34. ZHANG Zhijin,ZHANG Mingqi,PAN Zhifu. The effect of drilling process on the low cycle fatigue performance of DD6 nickel based single crystal high-temperature alloy[J]. Electrical Processing and Mold,2024 (1): 31-34. [22] WANG S,HU Y,ZUO Y,et al. Investigation on thermal barrier coating damages for ultrafast laser drilling of cooling holes[J]. Materials,2023,16(15): 5395. [23] 张晓兵,纪亮,蔡敏,等. 超快激光加工涡轮叶片气膜冷却孔技术研究[J]. 航空制造技术,2021,64(21): 14-22. ZHANG Xiaobing,JI Liang,CAI Min,et al. Research on ultrafast laser processing of gas film cooling holes in turbine blades[J]. Aviation Manufacturing Technology,2021,64 (21): 14-22. [24] 朱海南,齐歆霞. 涡轮叶片气膜孔加工技术及其发展[J]. 航空制造技术,2011,(13): 71-74. ZHU Hainan,QI Xinxia. Machining technology and development of turbine blade film holes[J]. Aviation Manufacturing Technology,2011,(13): 71-74. [25] WEBER R,GRAF T,FREITAG C,et al. Processing constraints resulting from heat accumulation during pulsed and repetitive laser material processing[J]. Optics Express,2017,25(4): 3966-3979. [26] 冯杰才,李诚,王星,等. 航天铝合金表面脉冲激光毛化工艺及其胶接性能[J]. 中国表面工程,2024,37(3): 67-77. FENG Jiecai,LI Cheng,WANG Xing,et al. Nanosecond-laser texturing of aerospace aluminum-alloy surface and its bonding properties[J]. China Surface Engineering,2024,37(3): 67-77. [27] BULGAKOVA N M,BULGAKOV A V. Pulsed laser ablation of solids: Transition from normal vaporization to phase explosion[J]. Applied Physics A,2001,73: 199-208. [28] GARRISON B J,SRINIVASAN R. Laser ablation of organic polymers: Microscopic models for photochemical and thermal processes[J]. Journal of Applied Physics,1985,57: 2909-2914. [29] 张伟,冯强,程光华,等. 飞秒激光对镍基合金的损伤机制和阈值行为[J]. 光学学报,2014,34(12): 340-346. ZHANG Wei,FENG Qiang,CHENG Guanghua,et al. Damage mechanism and threshold behavior of femtosecond laser on nickel based alloys[J]. Journal of Optics,2014,34 (12): 340-346. [30] KAUTZ E J,SENOR D J,HARILAL S S. The interplay between laser focusing conditions,expansion dynamics,ablation mechanisms,and emission intensity in ultrafast laser-produced plasmas[J]. Journal of Applied Physics,2021,130(20): 204901. [31] WANG R,DONG X,WANG K,et al. Investigation on millijoule femtosecond laser spiral drilling of micro-deep holes in thermal barrier coated alloys[J]. The International Journal of Advanced Manufacturing Technology,2021,114: 857-869. [32] WANG R,DONG X,WANG K,ET AL. Polarization effect on hole evolution and periodic microstructures in femtosecond laser drilling of thermal barrier coated superalloys[J]. Applied Surface Science,2021,537: 148001. [33] 陈前军,宋成伟,张海军,等. 飞秒激光加工金属材料的相变研究进展[J]. 激光与红外,2022,52(7): 947-955. CHEN Qianjun,SONG Chengwei,ZHANG Haijun,et al. Research progress on phase transition in femtosecond laser processing of metal materials[J]. Laser and Infrared,2022,52(7): 947-955. [34] NEDIALKOV N N,IMAMOVA S E,ATANASOV P A,et al. Deep-hole drilling in Fe by ultrashort laser pulses: Molecular dynamics simulation study[C]//XV International Symposium on Gas Flow,Chemical Lasers,and High-Power Lasers. SPIE,2005,5777: 846-849. [35] 林卿,任乃飞,笪扬,等. GH4037合金毫秒激光倾斜打孔试验与仿真[J]. 航空发动机,2022,48(3): 111-115. LIN Qing,REN Naifei,DA Yang,et al. GH4037 alloy millisecond laser inclined drilling test and simulation[J]. Aviation Engine,2022,48 (3): 111-115. [36] CHEN M F,LIN J H,HSIAO W T. Estimate pulsed laser drilling aluminum nitride (A1N) ceramic: A thermal simulation and experimental analyze[J]. Journal of Laser Micro Nanoengineering,2022,17(2): 127-132. [37] 李朋,贺斌,田东坡,等. 超快激光制孔辅助吹气优化的仿真与实验研究[J]. 激光技术,2018,42(5): 583-587. LI Peng,HE Bin,TIAN Dongpo,et al. Simulation and experimental research on the optimization of ultra fast laser hole making assisted blowing[J]. Laser Technology,2018,42 (5): 583-587. [38] 李效基. 飞秒激光螺旋制孔工艺的数值仿真与实验研究[D]. 厦门: 厦门大学,2019. LI Xiaoji. Numerical simulation and experimental research on femtosecond laser spiral drilling process[D]. Xiamen: Xiamen University,2019. [39] YANG L,DING Y,CHENG B,et al. Numerical simulation and experimental research on reduction of taper and HAZ during laser drilling using moving focal point[J]. The International Journal of Advanced Manufacturing Technology,2017,91: 1171-1180. [40] YANG Z,JI P,ZHANG Z,et al. Fundamental 3D simulation of the femtosecond laser ablation for cooling hole drilling on Ni and Fe based aero-engine components[J]. Optics Communications,2020,475: 126237. [41] ZOU G,ZHAO W,FENG B,et al. The mechanism of irregular hole-shape formation during ultrafast laser micro-drilling of metals[J]. Applied Physics A,2023,129(2): 120. [42] 张伟,张晓兵,蔡敏,等. 飞秒激光能量密度对镍基合金重铸层和加工效率的影响[J]. 航空制造技术,2017,60(18): 62-6578. ZHANG Wei,ZHANG Xiaobing,CAI Min,et al. The effect of femtosecond laser energy density on the recast layer and processing efficiency of nickel based alloys[J]. Aerospace Manufacturing Technology,2017,60(18): 62-6578. [43] 王杰,陆涛,滕跃飞,等. 离焦量对飞秒激光制孔影响的研究[J]. 应用激光,2021,41(2): 380-386. WANG Jie,LU Tao,TENG Yuefei,et al. Research on the effect of defocus on femtosecond laser drilling[J]. Applied Laser,2021,41(2): 380-386. [44] 温嵘,朱文宇,麻丁龙,等. 带热障涂层高温合金材料飞秒激光制孔工艺试验研究[J]. 激光与红外,2021,51(9): 1155-1159. WEN Rong,ZHU Wenyu,MA Dinglong,et al. Experimental study on femtosecond laser drilling process for high-temperature alloy materials with thermal barrier coatings[J]. Laser and Infrared,2021,51(9): 1155-1159. [45] 杨薇. 飞秒激光加工镍基高温合金微孔试验研究[J]. 电加工与模具,2021(4): 56-60. YANG Wei. Experimental study on femtosecond laser processing of micropores in nickel based high-temperature alloys[J]. Electrical Processing and Mold,2021 (4): 56-60. [46] SUN J,ZHANG D,JING X,et al. Experimental investigation and optimization on trepanning drilling in K24 superalloy by femtosecond laser via orthogonal experiment[J]. The International Journal of Advanced Manufacturing Technology,2023,128(7-8): 3343-3356. [47] 吴博,陈阳,张云鹏. 高压涡轮导向叶片气膜孔皮秒激光加工试验[J]. 电加工与模具,2022(5): 41-44. WU Bo,CHEN Yang,ZHANG Yunpeng. Experimental study on picosecond laser machining of gas film holes on high-pressure turbine guide blades[J]. Electrical Processing and Mold,2022(5): 41-44. [48] 马国庆. 飞秒激光加工镍基高温合金气膜孔的技术研究[D]. 西安: 西安工业大学,2021. MA Guoqing. Technical research on femtosecond laser processing of gas film holes in nickel based high-temperature alloys[D]. Xi'an: Xi'an University of Technology,2021. [49] DEEPU P,JAGADESH T,DURAISELVAM M. Investigations into morphology and surface integrity of micro-hole during femtosecond laser drilling of titanium alloy[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2023,45(10): 516. [50] SUN X,DONG X,WANG K,et al. Femtosecond laser processing of controlled tapered micro-holes based on dynamic control of relative attitude[J]. Optics & Laser Technology,2024,170: 110201. [51] 方菊,刘壮,李元成,等. 光斑起始平面对飞秒激光加工SiC/SiC斜孔的影响[J]. 应用激光,2022,42(11): 50-56. FANG Ju,LIU Zhuang,LI Yuancheng,et al. The influence of the starting plane of the spot on the femtosecond laser processing of SiC/SiC oblique holes[J]. Applied Laser,2022,42 (11): 50-56. [52] WANG X,LI L,HUANG Y,et al. Process applicability and hole wall microstructure evolution mechanism of femtosecond laser spiral drilling[J]. Optics & Laser Technology,2024,169: 109941. [53] LI M,WEN Z,WANG P,et al. Size effect of femtosecond laser helical drilling on nickel-based single crystal superalloy[J]. Journal of Manufacturing Processes,2024,116: 77-91. [54] 张晓兵,孙瑞峰. 二次法激光加工小孔技术[J]. 航空学报,2014,35(3): 894-901. ZHANG Xiaobing,SUN Ruifeng. Secondary laser processing technology for small holes[J]. Journal of Aeronautics,2014,35 (3): 894-901. [55] 蒋其麟,曹凯强,陈龙,等. 涡轮叶片气膜孔的纳秒-飞秒双波段激光加工[J]. 航空制造技术,2021,64(18): 53-61. JIANG Qilin,CAO Kaiqiang,CHEN Long,et al. Nanosecond femtosecond dual band laser machining of turbine blade air film holes[J]. Aviation Manufacturing Technology,2021,64 (18): 53-61. [56] LI M,WEN Z,WANG P,et al. Femtosecond laser high-quality drilling of film cooling holes in nickel-based single superalloy for turbine blades with a two-step helical drilling method[J]. Journal of Materials Processing Technology,2023,312: 117827. [57] ZHANG N,WANG M,BAN M,et al. Femtosecond laser drilling 100 μm diameter micro holes with aspect ratios> 20 in a Nickel based superalloy[J]. Journal of Materials Research and Technology,2024,28: 1415-1422. [58] ZHANG F,WANG J,WANG X,et al. Experimental study of nickel-based superalloy IN792 with femtosecond laser drilling method[J]. Optics & Laser Technology,2021,143: 107335. [59] 任云鹏,程力,周王凡,等. 铝合金飞秒激光单步法和三步法旋切打孔技术研究[J]. 中国激光,2022,49(22): 220-229. REN Yunpeng,CHENG Li,ZHOU Wangfan,et al. Research on single-step and three-step rotary cutting drilling technology of aluminum alloy femtosecond laser[J]. China Laser,2022,49 (22): 220-229. [60] PERRY M D,BANKS P S,STUART B C. Method to reduce damage to backing plate: US6303901[P]. 2001-10-16. [61] 王斌,刘跃专,王玉峰,等. 激光加工薄壁腔体微孔的背伤及防护[J]. 中国激光,2021,48(10): 240-252. WANG Bin,LIU Yuezhuan,WANG Yufeng,et al. Back injury and protection in laser processing of thin-walled cavity micropores[J]. China Laser,2021,48 (10): 240-252. [62] 张文武,王玉峰,王斌,等. 一种激光打孔背伤防护方法及其装置. 中国: CN202011030620.1[P],2022-04-05. ZHANG Wenwu,WANG Yufeng,WANG Bin,et al. A laser drilling back injury protection method and its device. China: CN202011030620.1[P]. 2022-04-05. [63] KNOWLES M R H,KEARSLEY A J,ANDREWS A J,et al. Laser-drilling: US6365871[P]. 2002-04-02. [64] WANG W. Back wall protection device for drilling injector nozzle: US11179811[P]. 2021-11-23. [65] RHOADES L J,RANDALL G J. Laser back wall protection by particulate shading: US 20070175872[P]. 2007-08-02. [66] 曹凯强. 大面积规则亚波长周期条纹与涡轮叶片气膜孔的精密激光加工[D]. 上海: 华东师范大学,2020. CAO Kaiqiang. Precision laser processing of large area regular subwavelength periodic stripes and turbine blade gas film holes[D]. Shanghai: East China Normal University,2020. [67] 田东坡,贺斌,李朋,等. 飞秒激光气膜孔对面壁无损伤制孔工艺研究[J]. 航空精密制造技术,2018,54(2): 6-9. TIAN Dongpo,HE Bin,LI Peng,et al. Research on non damage drilling process for face wall of femtosecond laser gas film holes[J]. Aerospace Precision Manufacturing Technology,2018,54(2): 6-9. [68] CORFE A G,STROUD D. Laser barrier material and method of laser drilling: US5049722[P]. 1991-09-17. [69] STROUD D,CORFE A G. Laser barrier material: US5140127[P]. 1992-08-18. [70] TURNER S C. Laser barrier material and method: US5767482[P]. 1998-06-16. [71] CUTTEL M. Method of drilling through a wall of a hollow component: US,EP2567775[P]. 2013-03-13. [72] 王恪典,袁新,董霞,等. 用冰-碳粉混合物作为涡轮叶片激光加工的后壁防护方法. 中国: CN104801857A[P]. 2015-07-29. WANG Kedian,YUAN Xin,DONG Xia,et al. Using an ice carbon powder mixture as a rear wall protection method for laser processing of turbine blades. China: CN104801857A[P]. 2015-07-29. [73] 陶俊. 激光打孔工艺及背伤保护实验研究[D]. 宁波: 中国科学院大学(中国科学院宁波材料技术与工程研究所),2017. TAO Jun. Experimental research on laser drilling technology and back injury protection[D]. Ningbo: University of Chinese Academy of Sciences (Ningbo Institute of Materials Technology and Engineering,Chinese Academy of Sciences),2017. [74] 李元成,张晓兵,杨炳东,等. 一种用于叶片激光制孔多孔梯度防护材料的制备方法.中国: CN202310216224. 5[P]. 2023-07-04. LI Yuancheng,ZHANG Xiaobing,YANG Bingdong,et al. A preparation method for porous gradient protective materials used in blade laser drilling. China: CN202310216224.5[P]. 2023-07-04. [75] 曾庆阳,王斌,张文武. 激光打孔背伤防护的蒙特卡罗模拟与实验研究[J]. 中国激光,2024,51(16): 335-346. ZENG Qingyang,WANG Bin,ZHANG Wenwu. Monte Carlo simulation and experimental study on laser drilling back injury protection[J]. China Laser,2024,51(16): 335-346. [76] 张子浩. GH3044镍基合金飞秒激光螺旋制孔工艺研究[D]. 哈尔滨: 哈尔滨工业大学,2023. ZHANG Zihao. Research on femtosecond laser spiral drilling process of GH3044 nickel based alloy[D]. Harbin: Harbin Institute of Technology,2023. [77] 毕帅,张晓兵,张伟,等. 超快激光加工小孔穿透成形时间的影响因素试验研究[J]. 红外与激光工程,2023,52(12): 119-128. BI Shuai,ZHANG Xiaobing,ZHANG Wei,et al. Experimental study on the influencing factors of ultra-fast laser processing small hole penetration forming time[J]. Infrared and Laser Engineering,2023,52 (12): 119-128. [78] 纪以春. 叶片气膜冷却孔超快激光加工的后壁防伤技术研究[D]. 西安: 西安交通大学,2023. JI Yichun. Research on backwall damage prevention technology for ultra fast laser processing of blade film cooling holes[D]. Xi'an: Xi'an Jiaotong University,2023. [79] LUTZ C,JUNG M,TSCHIRPKE K,et al. Optimization of heat accumulation during femtosecond laser drilling borehole matrices by using a simplex algorithm[J]. Materials,2022,15(14): 4829. [80] LUTZ C,HELM J,TSCHIRPKE K,et al. Drilling sequence optimization using evolutionary algorithms to reduce heat accumulation for femtosecond laser drilling with multi-spot beam profiles[J]. Materials,2023,16(17): 5775. [81] MAYNARD S R. Laser beam energy modification to reduce back-wall strikes during laser drilling: US 10632568[P]. 2020-04-28. [82] 王玉龙,乔磊,柯磊,等. 飞秒激光加工气膜冷却孔的对壁保护系统及方法.中国: CN202310167390.0[P]. 2023-04-11. WANG Yulong,QIAO Lei,KE Lei,et al. Wall protection system and method for femtosecond laser processing of gas film cooling holes. China: CN202310167390.0[P]. 2023-04-11. [83] 丁烨,薛遥,庞继红,等. 激光加工在线监测技术研究进展[J]. 中国科学: 物理学、力学、天文学,2019,49(4): 56-74. DING Ye,XUE Yao,PANG Jihong,et al. Research progress in online monitoring technology for laser processing[J]. Chinese Science: Physics,Mechanics,Astronomy,2019,49 (4): 56-74. [84] 郭伟,廉博文,潘柯文,等. 激光打孔背伤主动防护方法及装置. 中国: CN202311388166.0[P]. 2024-01-02. GUO Wei,LIAN Bowen,PAN Kewen,et al Active protection method and device for back injury caused by laser drilling. China: CN202311388166.0[P]. 2024-01-02. [85] 谢小柱,欧德亿,刘涛,等. 激光加工过程中声发射检测技术的研究进展[J]. 航空制造技术,2022,65(Z2): 98-109. XIE Xiaozhu,OU Deyi,LIU Tao,et al. Research progress on acoustic emission detection technology in laser processing[J]. Aviation Manufacturing Technology,2022,65 (Z2): 98-109. [86] 姚远. 基于声信号的深孔加工状态监测技术研究[D]. 西安: 西安理工大学,2015. YAO Yuan. Research on deep hole processing status monitoring technology based on acoustic signals[D]. Xi'an: Xi'an University of Technology,2015. [87] SUN T,MEI X,SUN X,et al. Real-time monitoring and control of the breakthrough stage in ultrafast laser drilling based on sequential three-way decision[J]. IEEE Transactions on Industrial Informatics,2022,19(4): 5422-5432. [88] SUN T,FAN Z,SUN X,et al. Femtosecond laser drilling of film cooling holes: Quantitative analysis and real-time monitoring[J]. Journal of Manufacturing Processes,2023,101: 990-998. [89] 闫庆,彭波,汪丽,等. 激光冷加工孔穿透光谱检测技术研究[J]. 光子学报,2023,52(3): 249-257. YAN Qing,PENG Bo,WANG Li,et al Research on laser cold processing hole penetration spectral detection technology[J]. Acta Photonica Sinica,2023,52(3): 249-257. |
| [1] | 郝明武, 姚鹏, 周嘉斌, 黎月明, 梁士通, 褚东凯, 黄传真. 皮秒激光切向修整青铜结合剂金刚石砂轮的影响因素研究[J]. 机械工程学报, 2024, 60(9): 229-240. |
| [2] | 张春波, 吴成军, 袁浩天. 等离子体作用下不同脉冲数超快激光烧蚀过程中化学反应机制的数值模拟[J]. 机械工程学报, 2024, 60(8): 94-106. |
| [3] | 孙健淞, 康仁科, 周平, 董志刚, 王毅丹. 蜂窝芯超声切削技术研究进展[J]. 机械工程学报, 2023, 59(9): 298-319. |
| [4] | 黄欣, 王成勇, 何宇星, 方戈贤, 杨涛, 姚俊雄, 郑李娟. 异质多元多层印制电路板精密孔机械加工[J]. 机械工程学报, 2023, 59(3): 283-307. |
| [5] | 张磊, 许帅康, 陈洁, 李鹏飞, 于世杰, 王超. 列车车体轻量化设计研究进展[J]. 机械工程学报, 2023, 59(24): 177-196. |
| [6] | 贾振元, 付饶, 王福吉. 碳纤维复合材料构件加工技术进展[J]. 机械工程学报, 2023, 59(19): 348-374. |
| [7] | 苏飞, 欧阳晨恺, 李纯杰, 郑雷, 蔡志华. 平纹编织碳纤维/Kevlar纤维增强混杂复合材料微-宏观切削去除机理研究[J]. 机械工程学报, 2022, 58(21): 331-348. |
| [8] | 王振忠, 施晨淳, 张鹏飞, 杨哲, 陈熠, 郭江. 先进光学制造技术最新进展[J]. 机械工程学报, 2021, 57(8): 23-56. |
| [9] | 丁峰, 王成勇, 赖子健, 张涛, 朱旭光, 高宽. 锆基非晶合金冰冻切削加工特征及其无晶化加工工艺研究[J]. 机械工程学报, 2021, 57(3): 235-246. |
| [10] | 倪陈兵, 朱立达, 宁晋生, 杨志超, 刘长福. 超声振动辅助铣削钛合金铣削力信号及切屑特征研究[J]. 机械工程学报, 2019, 55(7): 207-216. |
| [11] | 聂强, 黄凯, 毕庆贞, 朱利民. 微铣削中考虑刀具跳动的瞬时切厚解析计算方法[J]. 机械工程学报, 2016, 52(3): 169-178. |
| [12] | 朱锟鹏, 李科选, 梅涛, 施云高. 微铣削力建模研究进展*[J]. 机械工程学报, 2016, 52(17): 20-34. |
| [13] | 陈明君;陈妮;何宁;倪海波;刘战强;李亮. 微铣削加工机理研究新进展[J]. , 2014, 50(5): 161-172. |
| [14] | 郭隐彪;杨炜;王振忠;彭云峰;毕果;杨平. 大口径光学元件超精密加工技术与应用[J]. , 2013, 49(19): 171-178. |
| [15] | 萨日娜;张树有;裘乐淼. 面向制造装备加工工艺与性能需求转换的质量屋依赖与反馈模型[J]. , 2012, 48(15): 164-172. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
