• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (17): 314-330.doi: 10.3901/JME.2025.17.314

• 制造工艺与装备 • 上一篇    

扫码分享

涡轮叶片气膜冷却孔超快激光加工及后壁防护综述

赵万芹1,2, 张涛1,2, 孙涛1,2, 梅雪松1,2, 凡正杰1,2, 崔健磊1,2, 段文强1,2, 王文君1,2   

  1. 1. 西安交通大学机械工程学院 西安 710049;
    2. 西安交通大学精密微纳制造技术全国重点实验室 西安 710049
  • 收稿日期:2024-09-25 修回日期:2025-01-13 发布日期:2025-10-24
  • 作者简介:赵万芹,女,1983年出生,博士,副研究员,硕士研究生导师。主要研究方向为激光光束调控精密加工及其监测技术等。E-mail:linazhao@xjtu.edu.cn;王文君(通信作者),女,1981年出生,博士,教授,博士研究生导师。主要研究方向为高能束微细加工理论与应用、微细加工理论与应用等。E-mail:wenjunwang@mail.xjtu.edu.cn
  • 基金资助:
    国家科技重大专项(2019-VII-0009-0149)、国家自然科学基金(52105465)、航空发动机及燃气轮机基础科学中心(P2022-A-IV-002-003)和西安交通大学基本科研业务费专项资金(xzy012023146)资助项目。

Overview of Ultrafast Laser Processing and Back Wall Protection for Turbine Blade Film Cooling Holes

ZHAO Wanqin1,2, ZHANG Tao1,2, SUN Tao1,2, MEI Xuesong1,2, FAN Zhengjie1,2, CUI Jianlei1,2, DUAN Wenqiang1,2, WANG Wenjun1,2   

  1. 1. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049;
    2. State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710049
  • Received:2024-09-25 Revised:2025-01-13 Published:2025-10-24

摘要: 航空发动机的大推重比发展趋势刺激了涡轮叶片气膜冷却孔的高质量加工需求,而超快激光一方面由于其近似“冷加工”的性质在无重铸层、低孔壁粗糙度等微孔加工领域表现优异,另一方面兼具无材料选择性、非接触式、柔性加工等特点在微纳加工领域应用广泛,因此,气膜冷却孔的超快激光加工逐渐成为研究热点。然而涡轮叶片作为典型的薄壁腔体类零件,激光穿透叶片照射到空腔内壁引发的烧蚀损伤问题始终难以解决,后壁防护技术随之越来越受重视。立足于气膜冷却孔的超快激光加工,首先归纳总结了超快激光微孔加工的烧蚀机理及仿真案例,点明仿真分析和实验对照已经构成了激光加工的普遍研究方案;随后从激光参数、扫描方式、加工步骤等三个方面对比分析了超快激光气膜冷却孔加工的工艺路线及具体加工效果;在此基础上进一步总结了材料填充、工艺调控等后壁防护关键技术对高质量气膜冷却孔加工的重要作用,明确了填充材料的填充、取出、防护等性能需求,确定了工艺调控的可行策略及辅助作用,最后指出了超快激光制孔工艺研究的关键目标以及后壁防护技术的系统性、协同性发展趋势,为气膜冷却孔的实际加工奠定基础。

关键词: 气膜冷却孔, 超快激光, 加工机理, 加工工艺, 后壁防护

Abstract: The development trend of high thrust to weight ratio in aviation engines has driven the demand for high-quality machining of turbine blade film cooling holes. On the one hand, ultrafast laser has excellent performance in micro hole machining such as no recast layer and low hole wall roughness due to its approximate “cold machining” properties, and on the other hand, it is widely used in micro and nano machining due to its characteristics of no material selectivity, non-contact, and flexible machining. Therefore, ultrafast laser machining of film cooling holes has become a research hotspot. However, as a typical thin-walled cavity type component, the problem of ablation damage caused by laser penetrating the blade and irradiating the back wall is always difficult to avoid, and the back wall protection technology is also increasingly valued. This article is based on the ultrafast laser processing of film cooling holes. Firstly, it summarizes the ablation mechanism and simulation cases of ultrafast laser micro hole processing, and points out that simulation and experimental comparison constitute the general research route of laser processing; Furthermore, the process routes and specific processing effects of ultrafast laser film cooling hole processing are compared from three aspects: laser parameters, scanning methods, and processing steps; On this basis, the important role of key technologies such as material filling and process control in the processing of high-quality film cooling holes for back wall protection is further summarized. The performance requirements for filling, extraction, and protection of filling materials are clarified, and the feasible ideas and auxiliary positions of process control are determined. Finally, the key goals of ultrafast laser processing research and the systematic and collaborative development trend of back wall protection are pointed out, laying a foundation for the actual processing of film cooling holes.

Key words: film cooling holes, ultrafast laser, processing mechanism, processing technology, back wall protection

中图分类号: