[1] LENG J, SHA W, WANG B, et al. Industry 5.0:Prospect and retrospect[J]. Journal of Manufacturing Systems, 2022, 65:279-295. [2] VYSOCKY A, NOVAK P. Human-robot collaboration in industry[J]. MM Science Journal, 2016, 2016(2):903-906. [3] ABDOUS M A, DELORME X, BATTINI D, et al. Multi-objective optimization of assembly lines with workers fatigue consideration[J]. Ifac Papersonline, 2018, 51(11):698-703. [4] MA L, CHABLAT D, BENNIS F, et al. A new muscle fatigue and recovery model and its ergonomics application in human simulation[J]. Virtual and Physical Prototyping, 2010, 5(3):123-137. [5] MA L, CHABLAT D, BENNIS F, ZHANG W. A new simple dynamic muscle fatigue model and its validation[J]. International Journal of Industrial Ergonomics, 2009, 39(1):211-220. [6] CHAND S, ZHENG H, LU Y. A vision-enabled fatiguesensitive human digital twin towards human-centric human-robot collaboration[J]. Journal of Manufacturing Systems, 2024, 77:432-445. [7] YAACOUB A, THOMAS V, COLAS F, MAURICE P. A Probabilistic model for cobot decision making to mitigate human fatigue in repetitive co-manipulation tasks[J]. IEEE Robotics and Automation Letters, 2023, 8(11):7352-7359. [8] YAO B, LI X, JI Z, et al. Task reallocation of human-robot collaborative production workshop based on a dynamic human fatigue model[J]. Computers&Industrial Engineering, 2024, 189:109855. [9] YOU Y, CAI B, PHAM D T, et al. A human digital twin approach for fatigue-aware task planning in human-robot collaborative assembly[J]. Computers&Industrial Engineering, 2025, 200:11077. [10] ZHENG H, CHAND S, KESHVARPARAST A, et al. Video-based fatigue estimation for human-robot task allocation optimisation[C]//2023 IEEE 19th International Conference on Automation Science and Engineering (CASE). IEEE, 2023:1-6. [11] PETZOLDT C, NIERMANN D, MAACK E, et al. Implementation and evaluation of dynamic task allocation for human-robot collaboration in assembly[J]. Applied Sciences, 2022, 12(24):12645. [12] KHEZRI A, BENDERBAL H H, BENYOUCEF L. Towards a sustainable reconfigurable manufacturing system (SRMS):Multi-objective based approaches for process plan generation problem[J]. International Journal of Production Research, 2020, 59(15):4533-4558. [13] XU W, TANG Q, LIU J, et al. Disassembly sequence planning using discrete Bees algorithm for human-robot collaboration in remanufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2020, 62:101860. [14] YASSI A. Work-related musculoskeletal disorders[J]. Current Opinion in Rheumatology, 2000, 12(2):124-130. [15] DELP S L, ANDERSON F C, ARNOLD A S, et al. OpenSim:Open-source software to create and analyze dynamic simulations of movement[J]. IEEE Trans Biomed Eng, 2007, 54(11):1940-1950. [16] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [17] CAO Z, HIDALGO G, SIMON T, et al. OpenPose:Realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(1):172-186. [18] PAGNON D, DOMALAIN M, REVERET L. Pose2Sim:An open-source Python package for multiview markerless kinematics[J]. Journal of Open Source Software, 2022, 7(77):4362. [19] JIANG T, LU P, ZHANG L, et al. Rtmpose:Real-time multi-person pose estimation based on mmpose[J]. arxiv preprint arxiv:2303.07399, 2023. [20] MCFARLAND D C, MCCAIN E M, POPPO M N, et al. Spatial dependency of glenohumeral joint stability during dynamic unimanual and bimanual pushing and pulling[J]. Journal of Biomechanical Engineering, 2019, 141(5):051006. [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Comput, 1997, 9(8):1735-1780. [22] KINGMA D P, BA J. Adam:A method for stochastic optimization[J]. arxiv preprint arxiv:1412.6980, 2014. |