• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (14): 166-183.doi: 10.3901/JME.2025.14.166

• 运载工程 • 上一篇    

扫码分享

基于驾驶人操纵稳定域的分布式驱动电动汽车多模态扭矩分配策略研究

白鑫, 沈童, 王凡勋, 殷国栋, 王金湘, 方睿祺, 李新修, 梁晋豪   

  1. 东南大学机械工程学院 南京 211189
  • 收稿日期:2024-06-17 修回日期:2025-04-12 发布日期:2025-08-25
  • 作者简介:白鑫,男,2000年出生,博士研究生。主要研究方向为车辆系统动力学与控制、智能底盘。E-mail:xinbaiseu@163.com;殷国栋(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为车辆系统动力学与控制。E-mail:ygd@seu.edu.cn
  • 基金资助:
    国家自然科学基金(52025121,524B2157)、国家重点研发计划(2023YFD2000301)和江苏省前沿技术研发计划(BF2024040)资助项目。

Multi-modes Torque Distribution Strategy for Distributed Drive Electric Vehicle Based on the Driver Maneuverability Stability Region

BAI Xin, SHEN Tong, WANG Fanxun, YIN Guodong, WANG Jinxiang, FANG Ruiqi, LI Xinxiu, LIANG Jinhao   

  1. School of Mechanical Engineering, Southeast University, Nanjing 211189
  • Received:2024-06-17 Revised:2025-04-12 Published:2025-08-25

摘要: 分布式驱动电动汽车利用差动扭矩产生直接横摆力矩(Direct yaw moment, DYM),有效提高车辆的操纵性和可控性。然而,DYM 是由额外的纵向轮胎力产生的,很可能超过轮胎力约束区域。任意施加 DYM 会导致车辆在极限工况下发生侧滑等危险行为。因此分析极限工况下,保持车辆稳定时最优横摆力矩和期望驱动力的输入边界具有很高的研究价值。考虑到 DYM 和驱动力均与驾驶人的操纵有关,为此,提出一种新颖的驾驶人操纵稳定域概念,以描述保证车辆稳定时驾驶人的可行操作范围,通过区分驾驶人期望驱动力和上层横向稳定控制器输出的最优横摆力矩的响应方式,将车辆分为了四种模态。在此基础上,基于线性矩阵不等式设计了模态判定准则,用于计算车辆稳定区域的边界,并确定最佳模态。最后,开发了一种多模态扭矩分配策略以满足不同模态下的控制要求,并充分考虑电机节能和电机机械疲劳。仿真和实车试验结果表明,与分布式扭矩分配策略和单一模态扭矩分配策略相比,多模态扭矩分配策略性能更佳,既缓解了操纵性和稳定性的矛盾,又保证了车辆在极限操纵时的安全性和节能性。

关键词: 分布式驱动电动汽车, 驾驶人操纵稳定域, 扭矩分配, 线性矩阵不等式, 车辆动力学

Abstract: Distributed drive electric vehicles utilize differential torque to generate Direct Yaw Moment (DYM), which effectively improves vehicle maneuverability and controllability. However, DYM is produced by additional longitudinal tire force, which may exceed the tire force constraint region. Misusing DYM could result in hazardous behaviors, such as the vehicle sideslipping in extreme operating conditions. Therefore, it is of high research value to analyze the input boundaries of the optimal DYM and desired driving force to keep the vehicle stable under extreme operating conditions. Considering that both DYM and driving force are related to the driver maneuverability, to this end, a novel concept of driver maneuverability stability region is proposed to describe the feasible operating range of the driver when ensuring vehicle stability, and classifies the vehicle into four modes by distinguishing the response modes of the driver’s desired driving force and the optimal DYM outputted by the upper lateral stability controller. A modal decision criterion is designed based on linear matrix inequality to calculate the boundary of the vehicle stability region and determine the optimal mode. Finally, a multi-modes torque distribution strategy is developed to meet the control requirements under different modes, with full consideration of motor energy saving and motor mechanical fatigue. Simulation and real vehicle experimental results show that the multi-modes torque distribution strategy performs better than the distributed torque distribution strategy and the single-modal torque distribution strategy, which alleviates the contradiction between maneuverability and stability, and ensures the safety and energy saving of the vehicle in handling limit.

Key words: distributed drive electric vehicles, driver maneuverability stability region, torque distribution, linear matrix inequality, vehicle dynamics

中图分类号: